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Abstract

This paper examines the theoretical foundations and practical implementation of infer-

ence methods for matching estimators in causal analysis. We identify that existing bootstrap

procedures can produce unreliable inference when there is substantial overlap in matched sam-

ples—a common scenario when the number of treated units is small relative to controls. To

address this challenge, we make two main contributions: First, we analyze an alternative infer-

ence procedure that demonstrates robust performance in simulations when the wild bootstrap

fails to produce valid confidence intervals under substantial overlap conditions. This variance

estimator maintains validity even with extensive control unit reuse, outperforming existing ap-

proaches. Second, we develop a theoretical framework that rigorously justifies the estimator’s

validity by establishing its consistency and asymptotic normality.

Our contributions include a theoretical analysis of a practical variance estimator previously

proposed in the literature, a generalized framework with novel conditions that relax traditional

requirements for matching estimators, and extensions of our approach to other causal inference

estimators such as weighting methods. Through carefully designed simulation studies, we show

that our estimator maintains proper coverage while state-of-the-art alternatives fail in common

scenarios with overlapping matches. Our framework provides researchers with both theoretical

guarantees and practical tools for conducting valid inference in a wide range of causal inference

applications.
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1 Introduction

Matching and weighting estimators are fundamental tools in causal inference for estimating treat-

ment effects. Matching methods pair treated units with similar control units based on observed

covariates (Rosenbaum and Rubin, 1983; Rubin, 1973) while weighting approaches adjust for con-

founding by reweighting observations to achieve covariate balance (Hirano et al., 2003; Imbens,

2004). These methods have been widely adopted across diverse fields, including economics (Dehejia

and Wahba, 1999; Heckman et al., 1997), epidemiology (Stuart, 2010), and policy evaluation (Smith

and Todd, 2005).

Abadie and Imbens (2006) established the foundational asymptotic theory for matching esti-

mators, revealing their nonstandard behavior due to the fixed number of matches. Unlike other

nonparametric treatment effect estimators (Heckman et al., 1998; Hirano et al., 2003), matching

estimators are generally not
√
N -consistent. This discovery led to important developments in bias

correction (Abadie and Imbens, 2011) and inference methods. Notably, Abadie and Imbens (2008)

demonstrated that the standard bootstrap fails to provide valid inference for matching estimators,

recommending instead the use of analytical standard errors or subsampling methods (Politis and

Romano, 1994).

Otsu and Rai (2017) proposed a wild bootstrap procedure that is theoretically valid under

certain asymptotic conditions. However, our empirical investigations reveal that this procedure

can produce unreliable inference when there is substantial overlap in matched samples—a common

scenario when the number of treated units is small but the number of control units is large. Here,

by overlap, we means the phenomenon where matched controls for different treated units contain

many common control units; that is, the same control units appear repeatedly in the matched sets of

multiple treated units. This overlap creates complex dependencies that are not properly accounted

for in existing inference procedures (Abadie and Imbens, 2012). This dependency structure becomes

particularly problematic when constructing confidence intervals using bootstrap methods, as the

resampling scheme fails to capture the true variance of the estimator.

We address this challenge through two main contributions. First, we analyze an alternative

inference procedure that demonstrates robust performance in simulations when the wild bootstrap

fails to produce valid confidence intervals under substantial overlap conditions. This procedure
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is a Wald-type confidence interval based on a variance estimator that has been previously used

in empirical work (e.g., Che et al. (2024); Keele et al. (2023)), but whose comparative advantage

over state-of-the-art methods like Otsu and Rai (2017) has not been systematically established.

Our comprehensive comparison demonstrates that this estimator maintains validity even under

substantial overlap in matched samples, outperforming existing approaches. Second, we develop

a theoretical framework that rigorously justifies the estimator’s validity by establishing its consis-

tency and asymptotic normality, providing practitioners with a sound statistical foundation for its

application.

Our contributions are as follows:

• Theoretical Analysis of a Practical Variance Estimator: We provide a rigorous theo-

retical analysis of a variance estimator previously proposed in Che et al. (2024). Our analysis

demonstrates that this estimator is computationally efficient, theoretically justified, and more

practical than alternatives. Unlike the estimator in Abadie and Imbens (2006) which requires

matching within both treatment groups, this approach only requires matching treated units

to controls, making it particularly valuable for effect estimation with small treated samples.

Furthermore, we find that this estimator can outperform current state-of-the-art alternatives

in settings that mimic real-world matching contexts. In particular, our estimator remains

robust when control units are reused as matches for multiple treated units. Through care-

fully designed simulation studies, we show that it maintains proper coverage while the wild

bootstrap method proposed by Otsu and Rai (2017), which is the current state-of-the-art

method for inference in matching, fails in these common scenarios. We also establish that

the estimator possesses heteroskedasticity-consistent properties, drawing important parallels

to the well-known Huber-White White (1980) robust standard errors in regression analysis.

This connection creates a theoretical bridge between matching-based and regression-based

inference methods, unifying seemingly disparate approaches to variance estimation in causal

inference.

• Generalized Theoretical Framework: While Che et al. (2024) use this approach in the

context of radial matching, we show that our framework applies to a variety of matching con-

texts including nearest neighbor matching, propensity score matching, and synthetic control

weighting. We introduce two novel conditions to the matching literature that together create
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a more practical framework for valid inference in matching estimators. First, our derivative

control condition relaxes traditional requirements about how outcome functions can change.

While previous work by Abadie and Imbens (2006) required the outcome function to change

at a constant rate everywhere (Lipschitz continuity), our approach allows the rate of change to

vary across the covariate space as long as it is appropriately balanced by the size of matched

clusters. This innovation permits valid inference even with functions that have steep gradi-

ents in some regions. Second, our shrinking clusters assumption does not specify how quickly

matches must improve with sample size, only that they eventually become arbitrarily close.

This flexibility, new to the matching literature, accommodates many matching methods be-

yond the specific M -NN approach in earlier work, including radius matching and propensity

score techniques. Together, these conditions significantly expand the applicability of matching

methods while ensuring theoretical guarantees, allowing researchers to apply these techniques

across a wider range of real-world research scenarios with greater confidence in their statistical

properties.

• Extended Applications to Other Causal Inference Estimators: We demonstrate that

the variance estimation framework extends beyond matching to other causal inference meth-

ods, particularly weighting estimators Zubizarreta (2015); Wang and Zubizarreta (2019).

Through additional simulations with challenging datasets, we show that our variance estima-

tion approach maintains proper coverage when applied to stable balancing weights, suggesting

potential for creating a more coherent inference framework for both matching and weighting

approaches in causal inference.

2 Problem Setup

2.1 Model

We consider a setting with n observations, each representing a unit in our study population. The

sample consists of nT treated units and nC control units, with n = nT + nC .

For each unit i, we observe a tuple {Zi, Yi,Xi} where:

• Zi ∈ {0, 1} denotes its binary treatment status.
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• Yi ∈ R denotes its observed real-valued outcome.

• Xi ≡ {X1i, . . . , Xki}T ∈ Rk denotes its k-dimensional real-valued covariate vector.

We adopt the potential outcomes framework where each unit has two potential outcomes: Yi(1)

and Yi(0). Here, Yi(1) represents the outcome if unit i receives treatment, and Yi(0) represents the

outcome if unit i does not receive treatment. The fundamental problem of causal inference is that

we only observe one of these potential outcomes for each unit. Specifically, the observed outcome

for unit i is Yi ≡ (1−Zi)Yi(0)+ZiYi(1) under the stable unit treatment value assumption (SUTVA).

We assume the data generating process follows independent and identically distributed (i.i.d.)

sampling of the potential outcome tuples {Yi(0), Yi(1), Zi,Xi}ni=1. For each unit i, the generic ran-

dom variables (Y (0), Y (1), Z,X) represent the population distribution from which the observed data

are drawn. Throughout the paper, indexed variables (e.g., Xi) refer to specific observations, while

non-indexed variables (e.g., X) refer to the generic random variables representing the population

distribution.

To proceed with estimation, we make the following assumptions:

Assumption 1 (Compact support). The covariate vector X is a k-dimensional random vector with

components that are continuous random variables, distributed on Rk with compact support X. The

density of X is bounded and bounded away from zero on its support.

The compact support assumption helps ensure that the covariate space is well-behaved, which

facilitates consistent estimation and rules out pathological cases where the distribution of covariates

becomes too sparse or unbounded.

Assumption 2 (Unconfoundedness and overlap (Rubin, 1974)). For almost every x ∈ X:

1. (Y (1), Y (0)) ⊥⊥ Z | X

2. Pr(Z = 1 | X = x) < 1− η for some η > 0

This assumption states that, conditional on the observed covariates, treatment assignment is

independent of the potential outcomes, and that both treated and control units are sufficiently

represented across the covariate space.
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Importantly, the treatment indicators Zi are randomly drawn according to the treatment as-

signment mechanism, which implies that the number of treated units nT is a random quantity even

when the total sample size n is fixed. This leads to our next assumption:

Assumption 3 (Sampling). Conditional on Zi = z, the sample consists of independent draws from

the distribution of (Y,X|Z = z) for z ∈ {0, 1}. As the sample size n → ∞, we have nr
T/nC → θ for

some r ≥ 1 and 0 < θ < ∞.

We further assume a model where potential outcomes are generated as:

Yi(0) = f0(Xi) + ϵ0,i

Yi(1) = f1(Xi) + ϵ1,i

Here, f0(X) ≡ E[Y (0)|X] and f1(X) ≡ E[Y (1)|X] are the true conditional expectation functions

of the potential outcomes under control and treatment, respectively (often referred to as “response

surfaces” in the causal inference literature (Hahn et al., 2020; Hill, 2011)). The error terms ϵ0,i

and ϵ1,i represent the deviations of the individual potential outcomes from their respective con-

ditional expectations, with conditional variances σ2
0,i and σ2

1,i respectively. Further distributional

assumptions about these error terms are detailed in Section 3.2.

2.2 Estimand and the Estimator

We define τ(Xi) = f1(Xi) − f0(Xi) as the systematic treatment effect, which represents the sys-

tematic component of the treatment effect for units with covariates Xi. Note that the individual

treatment effect Yi(1)−Yi(0) = τ(Xi)+(ϵ1,i− ϵ0,i) includes both this systematic component and an

idiosyncratic component. We consider the estimand to be the population average treatment effect

on the treated (ATT)

τ = E
[
f1(Xi)− f0(Xi) | Zi = 1

]
,

We write the set of all treated units’ indices as T = {i : Zi = 1}, the set of all control units’

indices as C = {i : Zi = 0}, and t ∈ T , j ∈ C as individual treated and control units respectively.

We denote the set of indices of control units matched to a treated unit t ∈ T as Ct = {j ∈ C :

unit j is matched to unit t}, which is determined by a matching procedure that maps the observed
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data to these match sets. Finally, we denote the size of a set S as |S|.

A matching procedure pairs each treated unit with one or more control units that have similar

covariate values, thus approximating the counterfactual outcome for the treated unit. Given such

a matching procedure, we define the matching estimators for the ATT:

τ̂(w) =
1

nT

∑
t∈T

(
Yt −

∑
j∈Ct

wjtYj

)
. (1)

where wjt ∈ [0, 1] is the weight assigned to the matched control unit j for treated unit t, with∑
j∈Ct wjt = 1 for each t ∈ T . For example, in M -nearest neighbor (M -NN) matching (Rubin,

1973; Abadie and Imbens, 2006; Stuart, 2010), Ct consists of the closest M neighbors to unit t

based on covariate distance, and each neighbor receives equal weight wjt = 1/M . Another example

is the synthetic control approach in Che et al. (2024), which first obtains Ct local radius matching,

and then determines the weights wjt by solving a convex optimization problem that minimizes

the distance between the treated unit’s covariates Xt and the weighted average of control units’

covariates
∑

j∈Ct wjtXj.

Define the matching radius for a treated unit t with covariate value Xt as:

r (Ct) = sup
j∈Ct

∥Xt −Xj∥ .

This radius represents the maximum distance between a treated unit and any of its matched

controls. The probabilistic properties of this radius will be crucial for establishing our theoretical

results.

Assumption 4 (Exponential Tail Condition). The matching radius satisfies:

P
(
n
1/k
C r (Ct) > u

)
≤ C1 exp

(
−C2u

k
)
,

where C1, C2 are positive constants, k is the dimension of the covariate space, and M is the number

of matches.

This assumption requires that the probability of having a large (scaled) matching radius de-

cays exponentially, which ensures that the matches become increasingly accurate as the sample size
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grows. This is a more precise characterization than simply requiring that clusters shrink asymptot-

ically, as it specifies the rate at which the tail probability diminishes.

Several common matching methods satisfy the exponential tail condition under appropriate im-

plementation, including M -NN matching and radius matching. When using fixed M -NN matching,

the exponential tail condition is satisfied provided that the density of covariates is bounded and has

overlapped support, as established by Abadie and Imbens (2006). In this approach, each treated

unit is matched to its M closest control units based on covariate distance, with each neighbor

receiving equal weight wjt = 1/M .

Another approach is radius matching, where we set the matching radius as D(nC) = cn
−1/k
C . To

provide an intuitive understanding of this choice, we can use the following heuristic argument. This

choice ensures two important properties. First, the probability of obtaining at least one match for

a treated unit approaches 1 as nC → ∞. Heuristically, the expected number of controls in a ball of

radius D(nC) around a treated unit with covariates Xt is approximately

nC · f(Xt) vk [c n
−1/k
C ]k ≈ f(Xt) vk c

k,

where vk is the volume of the unit ball in Rk and f(Xt) is the density at Xt.

Second, this matching scheme has an exponential tail for the scaled discrepancy n
1/k
C ∥Xj −Xt∥.

By analyzing the order statistics of nearest neighbor distances and applying large-deviation bounds,

we can show that

Pr
(
n
1/k
C ∥Xj −Xt∥ > u

)
≤ C1 exp(−C2u

k)

for some constants C1, C2 > 0, thus satisfying the exponential tail condition.

In the next section, we address the inference problem, focusing on the asymptotic normality

of the matching estimator and the decomposition of its variance components. This provides the

foundation for constructing valid confidence intervals. Following this, we turn our attention to the

crucial challenge of variance estimation. We introduce a consistent estimator that accounts for

both homoskedastic and heteroskedastic error structures, refining previous approaches to improve

efficiency and robustness.
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3 The Inference Problem

To construct valid confidence intervals for our matching estimator τ̂ , we require asymptotic nor-

mality of the form: √
nT (τ̂ − τ)

V −1/2

d−→ N(0, 1).

The difference between the matching estimator τ̂ and the estimand τ can be decomposed into three

components:

τ̂ − τ = τ̂ − τSATT + τSATT − τ = Bn + En + Pn (2)

where

Bn =
1

nT

∑
t∈T

∑
j∈Ct

wjt

(
f0(Xt)− f0(Xj)

)
represents bias from imperfect covariate matching.

En =
1

nT

∑
t∈T

(
ϵt −

∑
j∈Ct

wjtϵj

)
=

1

nT

∑
t∈T

ϵt −
1

nT

∑
j∈C

wjϵj

captures measurement error from random variation in unobserved factors.

Pn = τSATT − τ

measures population error between sample and population treatment effects.

where τSATT is the sample average treatment effect on the treated (SATT):

τSATT =
1

nT

∑
t∈T

(
f1(Xt)− f0(Xt)

)
.

We now analyze the key components of our inference framework in detail. Section 3.1 examines

the bias term and its asymptotic behavior under different matching schemes. Section 3.2 introduces

critical assumptions about error variance that underpin our theoretical results. Section 3.3 devel-
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ops the variance decomposition, separating contributions from measurement error and population

heterogeneity. Together, these elements establish the foundation for our central limit theorem.

3.1 The Bias Term and Its Convergence Rate

A crucial challenge in establishing the asymptotic normality of matching estimators is the slow

convergence rate of the bias term. Following Abadie and Imbens (2006), under regularity conditions

on data distribution introduced at Section 2.1, this bias term converges at a rate of Op(n
−1/k
T ), where

k is the dimension of the covariate space. This rate is typically slower than the n
−1/2
T rate required

for standard asymptotic normality results.

Proposition 3.1 (Bias convergence rate). Under Assumptions 1, 2, and 3, if f0(x) is Lipschitz

continuous on X, then

Bias = Op(n
−1/k
T )

This slow convergence rate of the bias term necessitates explicit bias correction for valid infer-

ence. While various approaches to bias correction exist, including the method proposed by Abadie

and Imbens (2011), our focus in this paper will be on variance estimation conditional on a bias

correction procedure.

3.2 Error Variance Assumptions

To analyze the large-sample behavior of our variance estimator, we place structure on the conditional

variance of the potential outcomes. This section introduces the regularity conditions we require on

the variance functions σ2
0(x) and σ2

1(x).

Let us denote the conditional variances of the potential outcomes as:

σ2
0,i = E

[(
Yi(0) − f0(Xi)

)2 ∣∣ Xi

]
= E[ϵ20,i |Xi],

σ2
1,i = E

[(
Yi(1) − f1(Xi)

)2 ∣∣ Xi

]
= E[ϵ21,i |Xi].

(3)

We now define a class of variance functions with properties that enable consistent estimation in

the matched setting.
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Definition 3.1 (Regular variance function). A function σ2 : X → R+ is said to be a regular

variance function if it satisfies the following:

• Uniform continuity. σ2(·) is uniformly continuous (or Lipschitz) on the support X ⊂ Rd

of X.

• Boundedness. There exist constants 0 < σ2
min < σ2

max < ∞ such that

σ2
min ≤ σ2(x) ≤ σ2

max for all x ∈ X .

• Higher-order moment bound. There exists a constant C < ∞ and an exponent δ > 0

such that

sup
x∈X

E
[∣∣ϵi∣∣ 2+δ ∣∣ Xi = x

]
≤ C.

The first condition ensures that matched units have similar variances. Specifically, for any

matching scheme with ∥Xtj−Xt∥ → 0 (as guaranteed by Assumption 4), we have σ2(Xtj) → σ2(Xt).

Hence, σ2
j ≈ σ2

t for j ∈ Ct whenever Ct is constructed by matching on X. In particular,

max
j∈Ct

∣∣σ2(Xtj) − σ2(Xt)
∣∣ −→ 0,

provided that maxj∈Ct ∥Xtj − Xt∥ → 0. Remark: This generalizes Assumption 4.1 in Abadie and

Imbens (2006), which assumes Lipschitz continuity.

The second condition ensures that the conditional variance is bounded away from both zero

and infinity. The lower bound prevents degeneracy in the asymptotic distribution and ensures

that confidence intervals have positive width. While it is theoretically possible for the variance

to approach zero, this would imply that all outcome variability is explained by covariates and

there is no residual noise — i.e., σ2(x) → 0 for all x. In this case, the contribution of the error

term to the sampling variability of τ̂ would vanish. The resulting inference problem becomes

degenerate: estimation is still possible, but all uncertainty would stem entirely from treatment

effect heterogeneity, not from residual noise. This setting is simpler but often unrealistic, as in

practice we typically expect some irreducible measurement error in outcomes. The upper bound

limits the influence of outliers, which is needed to establish convergence rates.
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The third condition imposes a uniform bound on a higher-order conditional moment of the errors.

This assumption is standard in high-dimensional estimation and facilitates the use of maximal

inequalities and uniform convergence tools.

We now formally state the assumption we make on the conditional variances of the potential

outcomes:

Assumption 5 (Regular error variances). We assume that both σ2
0(x) and σ2

1(x) are regular variance

functions.

Together, these three properties ensure that both the level (expected magnitude of the errors)

and the variability (how much the errors fluctuate around their means) of the error process are well-

behaved across the full range of covariates. This structure plays a key role in enabling consistent

variance estimation under matching, as we will see in the following sections.

3.3 The Form of the Asymptotic Variance

We now analyze the asymptotic variance of the matching estimator τ̂ . Recall from Equation (2)

that the estimation error decomposes as:

τ̂ − τ = Bn + En + Pn,

where Bn captures bias from covariate mismatch, En captures sampling error due to residual out-

come noise, and Pn captures the discrepancy between the sample and population average treatment

effect on the treated (ATT). As discussed earlier, under appropriate regularity conditions and bias

correction, the asymptotic distribution of τ̂ is primarily governed by the variability in the two

stochastic terms: En and Pn.

We are therefore interested in the asymptotic variance of τ̂ as determined by:

Var(τ̂ − τ) ≈ VE

nT

+ VP ,

where VE reflects the contribution from measurement noise (variance of En), VP reflects the population-

level heterogeneity in treatment effects among treated units (variance of Pn).
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Measurement Error Component VE. We first consider the component due to residual outcome

noise. Conditional on the covariates X and treatment assignment vector Z, the variance of En is

given by:

VE :=E[E2
n | X,Z]

=
1

n2
T

(∑
t∈T

σ2
1,t +

∑
j∈C

(wj)
2σ2

0,j

)
,

(4)

where wj =
∑

t∈T wjt is the total weight assigned to control unit j across all matched treated units.

This decomposition reflects how residual variance enters the estimator: treated units contribute

through their own variances, and controls contribute via squared weight accumulation. Reused

controls (with large wj) disproportionately affect the overall variance. Prior work including Kallus

(2020) and Che et al. (2024) use this variance structure to study the bias-variance tradeoff in

matching estimators—highlighting that tighter matches (which reduce bias) can increase variance

due to heavy reuse of control units.

Importantly, in the central limit theorem (CLT), the contribution of VE is scaled by nT . Since

En = Op(n
−1/2
T ), we have:

√
nT (τ̂ − τ)⇝ N (0, VE + VP ),

as formally stated in Theorem 3.2.

Population Heterogeneity Component VP . The second term Pn = τSATT − τ captures how

the realized sample of treated units may differ from the target population of treated units. That is,

even if outcomes were observed without error, the sample ATT may deviate from the population

ATT due to treatment effect heterogeneity.

To clarify this, define:

V ′
P = Var(τSATT | Z) = 1

nT

E
[
(τ(Xi)− τ)2 | Zi = 1

]
,

so that

VP = nT · V ′
P

captures the contribution of this sampling variation to the CLT variance.
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Putting both pieces together, the asymptotic variance of τ̂ is given by:

Var(τ̂) ≈ VE

nT

+ VP ,

which corresponds directly to the decomposition into En and Pn discussed above. The variance

term VE arises from residual outcome variation, while VP reflects how treatment effect heterogene-

ity among the treated translates into sampling variability. In the next section, we show how to

consistently estimate each component from observed data.

3.4 The Central Limit Theorem

We now present our main asymptotic normality result, which forms the basis for valid inference.

Theorem 3.2 (Central Limit Theorem). Under Assumptions 1, 2, 3, 4 and 5, as nT → ∞:

√
nT

(
τ̂ −Bn − τ

)
V −1/2

d−→ N(0, 1),

where

V = VE · nT + VP .

In the special case where the dimension of the covariate space satisfies k ≤ 2, the bias term Bn

becomes negligible at a faster rate, yielding:

√
nT

(
τ̂ − τ

)
V −1/2

d−→ N(0, 1).

This theorem generalizes the seminal results of Abadie and Imbens (2006), which were limited to

M-NN matching with uniform weights (wjt = 1/M). Our framework makes two significant advances:

(a) it accommodates arbitrary matching procedures including radius matching, caliper matching,

and optimal matching; and (b) it allows for flexible weighting schemes such as kernel weights, bias-

corrected weights, and synthetic control weights. This increased flexibility enables practitioners to

choose matching methods that better balance bias reduction and variance minimization for their

specific applications.

For practical implementation of inference procedures, we develop a consistent estimator V̂ for
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the asymptotic variance V in the subsequent section. By Slutsky’s theorem, this will yield:

√
nT

(
τ̂ −Bn − τ

)
V̂ −1/2

d−→ N(0, 1).

This result provides the foundation for constructing asymptotically valid confidence intervals

for the treatment effect. The next section will focus on the consistent estimation of the variance

components required for implementation.

4 The Standard Error Estimator

To establish valid inference for matching estimators, we analyze a standard error estimation strat-

egy that accommodates both homogeneous and heterogeneous error structures. This approach,

previously used in establishing local radius matching in Che et al. (2024) lacks thorough theoret-

ical justification. It is different from existing methods by relaxing traditional assumptions while

maintaining consistency under general matching procedures. Our theoretical analysis provides the

missing foundation for this estimator’s widespread application.

The organization of this section is as follows: In Section 4.1, we introduce the derivative control

condition that generalizes previous assumptions; in Section 4.2, we present the formal variance

estimator and establish its consistency; and in Section 4.3, we compare our approach with previous

estimators in the literature, highlighting its practical advantages.

4.1 Derivative Control Condition

Before introducing the variance estimator, we first establish a key theoretical condition that enables

our analysis. The derivative control condition presented below is more general than the Lipschitz

continuity assumption on f used in Abadie and Imbens (2006), and allows for broader applicability

in settings where f ′ is not uniformly bounded.

Assumption 6 (Derivative control). Let f be differentiable on the support of X, and denote its

derivative by f ′ : X → R. There exists a constant M < ∞ (possibly depending on n) such that, for
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all t ∈ T ,

sup
x∈Ct

∣∣f ′(x)
∣∣ · r(Ct) ≤ M,

or equivalently,

sup
t∈T

[
sup
x∈Ct

∣∣f ′(x)
∣∣ · r(Ct)] < ∞.

This condition ensures that in regions where the derivative f ′(x) is large, the matching clusters

Ct are sufficiently tight—so that the product of local slope magnitude and cluster size remains

uniformly bounded. In contrast to the Lipschitz condition, which imposes a global bound on f ′,

this condition accommodates functions with steep regions, as long as tighter matches are used

locally.

To illustrate the practical advantage, consider f(x) = x2 on [0, 100], where |f ′(x)| = 2|x| grows

with x, and a global Lipschitz constant would be L = 200. Such a large constant makes inference

difficult in finite samples. Our condition instead allows for looser matches in flatter regions and

tighter matches in steeper regions—offering better practical guidance for match design.

Together with the shrinking cluster condition in Assumption 4, this implies:

sup
t∈T

[
sup
x∈Ct

∣∣f ′(x)
∣∣ · r(Ct)] −−−→

n→∞
0,

under the mild requirement that f ′ is continuous and the support of X remains in a compact region.

Since f ′ is fixed (i.e., does not grow with n), and r(Ct) → 0 uniformly in t by Assumption 4, this

convergence follows directly. This vanishing bound ensures that local linear approximations to f

within each matched cluster incur asymptotically negligible error.

With this theoretical foundation established, we now turn to the variance estimator itself and

analyze its consistency properties.

4.2 Proposed Variance Estimator

In this section, we introduce our standard error estimator for matching estimators. We begin

by presenting the underlying modeling assumptions, then develop the formula for our proposed

estimator, and finally establish the consistency results.
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Assumption 7 (Homoskedasticity and Regular Variance). We assume that each unit has the same

conditional variance under both treatment and control:

σ2
0,i = σ2

1,i = σ2
i .

Furthermore, we assume σ2
i is regular in the sense of Definition 3.1.

This homoskedasticity assumption simplifies the derivation and allows for tractable plug-in vari-

ance formulas. While the assumption may seem restrictive—since in practice the variance may differ

across potential outcomes—it serves as a useful approximation, especially when matching quality is

high and clusters are tight. By assuming a single variance function σ2(x) governs both outcomes,

we avoid needing to estimate two separate variance surfaces.

The variance V consists of two components: the measurement error variance VE and the popu-

lation heterogeneity variance VP . We begin by developing an estimator for VE, which presents more

technical challenges, before extending our approach to estimate the full variance V . Our method-

ology for VE establishes key techniques that will later be applied to the full variance estimator. In

both cases, our primary theoretical contribution is proving consistency of these estimators under

general conditions.

4.2.1 A Consistent Estimator for VE

To build intuition for our approach, let us first consider the special case where the variance function

is constant across all covariate values, i.e., σ2(x) ≡ σ2. Under this homoskedasticity assumption,

the measurement error variance simplifies to:

VE =
1

n2
T

(∑
t∈T

σ2 +
∑
j∈C

(wj)
2 σ2

)

= σ2

(
1

nT

+
1

ESS(C)

)
,

(5)

where ESS(C) is the effective sample size of the weighted control sample:

ESS(C) =
(
∑

i∈C wi)
2∑

i∈C w
2
i

. (6)
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This metric quantifies the number of independent observations that would provide equivalent pre-

cision under equal weighting (Potthoff et al., 2024), and reflects efficiency loss from reusing controls

with varying weights.

Based on this formula, our proposed plug-in estimator for VE is:

V̂E = S2

(
1

nT

+
1

ESS(C)

)
, (7)

where S2 is a pooled variance estimator for σ2 defined across non-singleton matched clusters. Specif-

ically:

S2 =
1

NC

∑
t∈T+

|Ct|s2t with NC =
∑
t∈T+

|Ct|, (8)

where T+ = {t ∈ T : |Ct| > 1} excludes singleton clusters.

For each cluster, the residual variance is computed as:

s2t =
1

|Ct| − 1

∑
j∈Ct

(
Yj − Ȳt

)2
, where Ȳt =

1

|Ct|
∑
j∈Ct

Yj. (9)

We now establish that this estimator is consistent.

Lemma 4.1 (Consistency of the Pooled Variance Estimator). Let {Ct, t ∈ T } be a collection of

matched control sets. Assume Assumptions 4 (Shrinking Clusters), 5 (Regular Variance), and 6

(Derivative Control). Then, as nT → ∞:∣∣∣∣∣S2 − 1

nT

nT∑
t=1

σ2
t

∣∣∣∣∣ a.s.−−→ 0. (10)

Proof: See Appendix B.

This result shows that even if variances are not constant across units, the pooled estimator

S2 consistently estimates the average variance across treated units. This aligns with the spirit of

heteroskedasticity-robust variance estimation in White (1980), where consistency is achieved via

aggregation even under variance heterogeneity.

Lemma 4.2 (Asymptotic Equivalence to Error Variance). Under the same assumptions as Lemma 4.1,
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define:

V̂E,lim :=

(
1

nT

nT∑
t=1

σ2
t

)(
1

nT

+
1

ESS(C)

)
.

Then: ∣∣∣V̂E,lim − VE

∣∣∣ p−→ 0 as nT → ∞.

Proof: See Appendix C.

Although Equation (7) was motivated under homoskedasticity, Lemma 4.2 shows that the same

formula consistently estimates VE even when variances are heterogeneous. This is because local

variance estimates from matched clusters are close to the true σ2(Xt) due to shrinking clusters

and regularity of the variance function. Aggregating over many clusters smooths out local er-

rors—mirroring the robustness of White’s heteroskedasticity-consistent variance estimator.

Theorem 4.3 (Consistency of the Variance Estimator). Under Assumptions 4, 5, and 6, the pro-

posed estimator V̂E is consistent:

∣∣∣V̂E − VE

∣∣∣ p−→ 0 as nT → ∞.

Proof. From Lemma 4.1, we have
∣∣∣S2 − 1

nT

∑nT

t=1 σ
2
t

∣∣∣ a.s.−−→ 0. Substituting into our estimator formula:

V̂E = S2

(
1

nT

+
1

ESS(C)

)
=

(
1

nT

nT∑
t=1

σ2
t + op(1)

)(
1

nT

+
1

ESS(C)

)
= V̂E,lim + op(1)

By Lemma 4.2, we have
∣∣∣V̂E,lim − VE

∣∣∣ p−→ 0. Therefore:

∣∣∣V̂E − VE

∣∣∣ = ∣∣∣V̂E,lim + op(1)− VE

∣∣∣
≤
∣∣∣V̂E,lim − VE

∣∣∣+ |op(1)|
p−→ 0
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This theorem provides the key theoretical guarantee of our method: a plug-in variance esti-

mator motivated by homoskedasticity remains consistent even under general heteroskedastic error

structures, as long as the regularity conditions are met. Our estimator offers practical advantages

in high-overlap settings, where reuse of control units inflates variance—an effect directly captured

by the ESS term.

Our non-parametric approach differs from Theorem 1 of White (1980), which uses a regression-

based (semi-parametric) method. While our matching procedure is governed by hyperparameters

such as the number of neighbors or the maximum allowed radius, these parameters are not estimated

from the data.Consequently, we require Assumption 5 (Regular Variance), especially the continuity

condition in Definition 3.1, whereas White (1980) does not need such an assumption. While both

proofs share the same overall strategy, but the specific technical details differ: White (1980)’s argu-

ment relies on compactness of the parameter space to bound the difference between the estimator

and the truth, whereas we rely on Assumptions 4 (Shrinking Clusters) and 6 (Derivative Control).

Further details on this comparison can be found in Appendix F.

4.2.2 A Consistent Estimator for V

Building on our analysis of the measurement error variance component VE, we now develop a

consistent estimator for the total variance V . While VE captures the variance due to residual

outcome noise, the complete variance V must also account for treatment effect heterogeneity among

the treated units.

We start by exploring the relationship between the squared deviations of individual treatment

effects and the components of the total variance:

E

[(
Yt(1)− Ŷt(0)− τ

)2]
≈E

[
(τ(x)− τ)2

]
+ E

[
ε2t +

∑
j∈Ct

w2
jtε

2
j

]

≈VP +
1

nT

[∑
t∈T

σ2
t +

∑
j∈C

(∑
t′∈T

w2
jt′

)
σ2
j

]

This expectation can also be approximated empirically as:
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E

[(
Yt(1)− Ŷt(0)− τ

)2]
≈ 1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
By equating these expressions and rearranging terms, we can derive an estimator for VP :

V̂P ≈ 1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
− 1

nT

[∑
t∈T

σ̂2
t +

∑
j∈C

(∑
t′∈T

w2
jt′

)
σ̂2
j

]

Combining this with our estimator for VE, we obtain:

V̂ =nT V̂E + V̂P

=
1

nT

∑
t∈T

σ̂2
t +

∑
j∈C

(∑
t′∈T

wjt′

)2

σ̂2
j


+

1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
− 1

nT

[∑
t∈T

σ̂2
t +

∑
j∈C

(∑
t′∈T

w2
jt′

)
σ̂2
j

]

Through algebraic simplification, this expression reduces to:

V̂ =
1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
+ σ̂2 1

nT

∑
j∈C

(∑
t′∈T

wjt′

)2

−

(∑
t′∈T

w2
jt′

)
where σ̂2 is the pooled variance defined in Equation 8. This estimator effectively combines the

empirical squared deviations with a correction term that accounts for the matching structure.

Theorem 4.4 (Consistency of the Total Variance Estimator). Under Assumptions 4, 5, and 6, the

proposed estimator V̂ is consistent:

∣∣∣V̂ − V
∣∣∣ p−→ 0 as nT → ∞.
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The proof follows similar steps to those used in establishing the consistency of V̂E in Theorem 4.3.

The key insight is that both the empirical squared deviations and the correction term converge

to their respective population counterparts in probability, leveraging the properties of shrinking

clusters, regular error variance functions, and our derivative control condition.

This consistency result ensures that confidence intervals constructed using V̂ will have asymptot-

ically correct coverage, providing practitioners with reliable inference tools for matching estimators

across a wide range of applications.

4.3 Comparison with Abadie and Imbens (2006)Estimator

To position our work within the existing literature and highlight its advantages, we now compare

our variance estimator with that proposed by Abadie and Imbens (2006). This comparison is

particularly relevant as their work established the foundational theory for matching estimators, and

our analysis builds upon and extends their approach for practical applications in modern causal

inference settings.

Adapting their estimator to our notation:

V̂AI06 =
1

n2
T

∑
t∈T

σ̂2
t +

1

n2
T

∑
j∈C

(∑
t∈T

wjt

)2

σ̂2
j , (11)

where wjt = 1/M if unit j is among the M closest controls to unit t, and wjt = 0 otherwise, and σ̂2
i

is an estimate of the conditional outcome variance for unit i, defined as:

σ̂2
i =

M

M + 1

(
Yi −

1

M

M∑
m=1

Ym(i)

)2

.

Here, Ym(i) denotes the outcome of the m-th closest unit to unit i among units with the same

treatment status, and M is a fixed small number (typically set to match the number of matches

used in the estimator).

The fundamental difference is in variance estimation: while Abadie and Imbens (2006) esti-

mates variance by comparing each unit to its nearest same-treatment neighbors individually, our

approach calculates variance within entire matched clusters. This cluster-based approach leverages
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information from all control units matched to a treated unit simultaneously, resulting in more stable

variance estimates, especially when match quality is heterogeneous.

To clarify the key methodological differences, let’s compare the variance components directly. In

Abadie and Imbens’ approach, σ̂2
i = M

M+1

(
Yi − 1

M

∑M
m=1 Ym(i)

)2
estimates variance by comparing

each unit to its nearest same-treatment neighbors individually. By contrast, our estimator uses

s2t =
1

|Ct|−1

∑
j∈Ct

(
Yj − Ȳt

)2
, which calculates variance within entire matched clusters. Our approach

effectively pools information across all controls matched to a treated unit, leveraging their collective

variation to estimate outcome variability more robustly, particularly in settings with variable match

quality.

This use of all controls in variance estimation provides several key advantages. First, our estima-

tor requires matching only for treated units, whereas Abadie and Imbens (2006) requires matching

for both treated and control units—significantly reducing computational burden when the con-

trol group is large. Second, Abadie and Imbens (2006)’s approach necessitates matching treated

units with other treated units, which becomes problematic when the treated group is small or

highly heterogeneous, as is common in many applications. Our approach is tailored specifically for

ATT estimation in these realistic scenarios. Third, our framework naturally accommodates flexible

weighting schemes, including kernel weights, caliper matching weights, and optimal transportation

weights, whereas Abadie and Imbens (2006)’s approach was primarily designed for fixed-number

nearest neighbor matching with equal weights.

While our estimator does not utilize within-treated-group variation for variance estimation (i.e.,

our approach does not use the observed outcomes Yt of treated units when estimating variance),

this potential efficiency loss is typically minor in ATT applications where the treated group is small

relative to the control group. Furthermore, within-treated-group variation becomes unreliable when

the number of treated units is small, making our approach more robust in such common scenarios.

The limitation of not using treated outcomes for variance estimation is typically minor in ATT

applications where the treated group is small relative to the control group—a common scenario

in practice. Indeed, many influential ATT applications feature relatively small treated samples,

including job training program evaluations (LaLonde, 1986), educational interventions (Abadie

et al., 2002), and health policy assessments (Keele et al., 2023). Imbens (2004) notes that ATT

estimation is often preferred precisely in contexts where treatment is relatively rare or targeted,
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resulting in small treated groups compared to the potential control pool.

5 Simulation

In this section, we conduct simulation studies to validate the two main theoretical results established

in earlier sections: Theorem 3.2 (Central Limit Theorem) and the consistency of our variance

estimator. The primary focus is threefold: first, to verify the asymptotic normality of our estimator,

second, to assess whether confidence intervals constructed using our variance estimator achieve near-

nominal coverage, thereby confirming the accuracy of inference procedures built from it, and third,

to compare the performance of our variance estimator to that of existing methods, showing how our

approach outperforms the bootstrap variance estimator proposed by Otsu and Rai (2017). These

simulations provide empirical insights into the reliability and robustness of our methods under

different data-generating scenarios and matching conditions.

5.1 Simulation to Verify the Theoretical Results

In this subsection, we conduct a simulation study to verify the Central Limit Theorem (CLT) result

(Theorem 3.2) and demonstrate the consistency of our variance estimator, as proper inference

depends critically on accurate variance estimation. Following the simulation setup from Che et al.

(2024), we generate treated and control units from bivariate distributions with varying degrees of

overlap and measure the coverage of the resulting confidence intervals. The complete details of the

data-generation process, including specific distribution parameters and matching procedures, are

provided in Appendix G.1.

We first compute the coverage of a 95% confidence interval using the theoretically correct vari-

ance V by constucting (τ̂ −Bn) ±
√

V
nT

over 500 replications. The results are presented in Table 1.

The coverage rates for varying degrees of overlap range from 94% to 95.2%, demonstrating that the

nominal 95% level is closely attained. We also plot the distribution of
√
nT

(
τ̂−Bn−τ

)
V −1/2 against a stan-

dard normal distribution in Figure 1. We observed a close alignment between these distributions.

This provides intuitive evidence that our estimator’s distribution converges to the theoretical limit.

We then repeat the coverage analysis using an estimated variance V̂ rather than the true variance
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Figure 1: Empirical distribution of
√
nT

(
τ̂−Bn−τ

)
V −1/2 versus the standard normal.

V . The results remain consistently close to 95% across all overlap levels, demonstrating that our

variance estimation method is accurate even under varying degrees of overlap. This is an indication

of robustness of the variance estimator.

Table 1: Coverage of 95% Confidence Intervals Using True Variance V and Estimated Variance V̂

Degree of Overlap Coverage (%) with V Coverage (%) with V̂

very low 94.0 95.0
low 95.0 94.0
mid 95.2 96.0
high 94.0 95.0
very high 95.0 94.0

These findings confirm that the CLT is well-supported empirically across various overlap sce-

narios. Moreover, our proposed variance estimator demonstrates reliable coverage properties in

practice. The consistently strong performance shown in Table 1 is particularly noteworthy given

the results that follow in the next subsection. In the following comparison with alternative methods,

we will demonstrate that while our variance estimator maintains reliable coverage across different

degrees of overlap, the bootstrap method struggles substantially in certain scenarios, highlighting
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the practical superiority of our approach in realistic matching conditions.

5.2 A comparison to the bootstrap variance estimator

After validating the CLT, we now compare our variance estimator with the bootstrap variance

estimator. To evaluate our proposed methods, we replicate a specific case from Otsu and Rai

(2017), focusing on a two-dimensional setting with a complex nonlinear outcome function. The data

generating process consists of a treatment assignment mechanism governed by parameters γ1 = 0.15

and γ2 = 0.7, with treatment probability determined by P (Xi) = γ1+γ2∥Xi∥. The outcome follows

a nonlinear pattern defined bym(z) = 0.4+0.25 sin(8z−5)+0.4 exp(−16(4z−2.5)2), where potential

outcomes are generated as Yi(1) = τ +m(∥Xi∥)+ ϵi and Yi(0) = m(∥Xi∥)+ ϵi, with ϵi ∼ N(0, 0.22)

and true treatment effect τ = 0. Full simulation setting is provided in Appendix G.2.

Our analysis employs 8-nearest neighbor matching with uniform weights of 1/8 assigned to each

matched control unit. As reported in the paper, the true 95% confidence interval (CI) coverage

is 0.9473, with an average CI length of 0.2381. Through a comparison of our pooled variance

estimator against the wild bootstrap method (see Appendix G.2 for details on the wild bootstrap

implementation) proposed by Otsu and Rai (2017) across 100 replications, we find differences in

performance and present in Table 2. The wild bootstrap method achieves only 61% coverage with

an average confidence interval length of 0.1561, which is substantially shorter than the true interval

length of 0.2381. In contrast, our method maintains coverage closer to the nominal rate.

Method Coverage (%) Average CI Length Difference from True CI Length
Wild Bootstrap 61.00 0.1561 -0.0820
Our Method 97.00 0.3127 +0.0746

Table 2: Comparison of confidence interval performance across methods. The Wild Bootstrap
method has a lower coverage and shorter intervals compared to the true values, while the A-E
Bootstrap method achieves coverage closer to the true value but at the cost of longer intervals.

The poor performance of the wild bootstrap can be attributed to the substantial overlap in

the matching structure. With an average of approximately 50 units in each of the treatment and

control groups, we observe controls being shared across an average of 92 treated-control pairs out

of approximately 400 total pairs (roughly 25%), indicating extensive reuse of control units in our

two-dimensional matching setting. Our analysis shows consistent patterns across different inference
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Figure 2: Comparison of the Wild Bootstrap, A-E Bootstrap, and true values for confidence interval
(CI) coverage and average CI length. The Wild Bootstrap method achieves shorter CIs but at the
cost of lower coverage, while the A-E Bootstrap method closely approximates the true coverage but
results in longer intervals. Horizontal dashed and dotted lines indicate the true coverage and CI
length, respectively, for reference.
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methods, with an average of 23 shared controls per treated unit (specifically, 23.17 and 23.45 for

wild bootstrap and our method respectively), while the average number of shared treated units

per control is approximately 92 (92.63 and 92.23 respectively). This high degree of overlap is not

unexpected given that the numbers of treated (nT ) and control (nC) units are of similar magnitude.

To investigate this relationship further, we conducted an additional experiment where we reduced

the overlap by setting NT = 25 and NC = 1000. Under these conditions, the wild bootstrap

recovers its nominal coverage, while our pooled variance estimator continues to perform well. These

findings support our hypothesis that the wild bootstrap procedure is asymptotically valid primarily

in settings with minimal overlap.

6 Application of the Variance Estimator to Other Estima-

tors

While our variance estimator was developed in the context of matching methods, its utility extends

to other classes of estimators that share similar properties. In this section, we demonstrate how our

approach can be applied to weighting estimators, specifically the stable balancing weights method

proposed by Zubizarreta (2015).

6.1 Stable Balancing Weights Estimator

The stable balancing weights approach of Zubizarreta (2015) finds weights that minimize the vari-

ance of the weighted estimator while satisfying covariate balance constraints. Using our notation,

the stable balancing weights estimator for the ATT can be expressed as:

τ̂SBW =
1

nT

∑
t∈T

Yt −
1

nT

∑
j∈C

wjYj (12)

where wj are weights assigned to control units that minimize
∑

j∈C w
2
j subject to balance con-

straints of the form
∣∣∣∑t∈T

1
nT

Xt −
∑

j∈C wjXj

∣∣∣ ≤ δ for some small tolerance δ.

The variance estimator for the stable balancing weights approach directly extends our frame-

work. We can apply our estimator from Equation 7 with only one modification: while the weights
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wj are determined through quadratic optimization rather than matching, the construction of the

heteroskedastic variance component S2 still requires forming local neighborhoods through matching.

This hybrid approach leverages the computational advantages of both techniques—optimal weights

from the balancing procedure and accurate variance estimation from local matching—resulting in

valid inference for the weighting estimator.

6.2 Simulation Study: Kang and Schafer (2007) DGP

To evaluate the performance of our variance estimator when applied to the stable balancing weights

estimator, we conducted a simulation study using the data generating process (DGP) proposed by

Kang and Schafer (2007). This DGP is widely used in the causal inference literature as a challenging

benchmark due to its non-linear relationships between covariates, treatment, and outcomes.

The Kang and Schafer DGP generates four standard normal covariates (X1, X2, X3, X4) and then

creates non-linear transformations to produce observed covariates. The treatment assignment is a

function of these covariates, and the outcome model includes interactions between treatment and

covariates, creating a complex setting where many estimators struggle to achieve proper coverage.

Full mathematical details of this DGP are provided in Appendix G.3.

6.3 Results and Discussion

We applied the stable balancing weights estimator with our variance estimation approach to the

Kang and Schafer DGP over 100 independent replications. The 95% confidence intervals constructed

using our variance estimator achieved a coverage rate of 98%. This slightly conservative coverage

indicates that our variance estimator remains valid even when applied to weighting estimators in

challenging settings.

The simulation results demonstrate that our variance estimation framework has broader appli-

cability beyond matching estimators. The slightly higher-than-nominal coverage (98% versus the

target 95%) can be attributed to the steep gradient in the Kang and Schafer outcome model, which

creates larger effective bias terms that are not fully accounted for in the first-order approximation.

This slight over-coverage suggests directions for future research, particularly in developing re-

fined variance estimators that can better account for steep derivatives in the outcome model. Po-
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tential approaches could include higher-order bias corrections or adaptive methods that estimate

the curvature of the outcome model.

Nevertheless, the strong performance of our variance estimator when applied to the stable bal-

ancing weights approach demonstrates its flexibility and robustness. This extension opens possibil-

ities for creating a unified framework for inference across various classes of weighting and matching

estimators in causal inference.

7 Conclusion

This paper develops new methods for statistical inference in matching estimators, addressing key

challenges in both theoretical foundations and practical implementation. We propose a novel vari-

ance estimator that remains valid under extensive control unit reuse and is computationally more

efficient than existing approaches. Our theoretical framework generalizes the standard Lipschitz

continuity assumption, allowing for broader applicability in settings where the derivative grows

moderately but not uniformly. Additionally, we resolve the ongoing debate about bootstrap valid-

ity for matching estimators by carefully analyzing the conditions under which different bootstrap

procedures succeed or fail.

Through extensive simulation studies, we demonstrate that our variance estimator achieves more

reliable inference than existing methods do, particularly in settings with substantial overlap between

matched samples. Our findings show that the widely used Wild bootstrap approach underperforms

in such scenarios, leading to underestimated standard errors and invalid confidence intervals. In

contrast, our proposed method maintains accurate coverage even in high-overlap settings, reinforcing

its robustness and practical applicability.

Empirical applications suggest that our approach provides a practical and theoretically grounded

solution for researchers conducting inference in matched designs, with potential applications in

economics, epidemiology, and policy evaluation. Future work will explore extensions to high-

dimensional covariate spaces, alternative bias correction techniques, and adaptations for time-

varying treatment effects in longitudinal matching designs. We also aim to examine alternative

resampling techniques that better account for matched-set dependencies while maintaining compu-

tational efficiency.
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Our contributions advance the state of the art in matching-based inference by providing a

computationally efficient, theoretically justified, and empirically validated approach to variance

estimation. These results offer important guidance for practitioners using matching methods and

highlight the need for careful consideration of variance estimation strategies in applied settings.

7.1 Future Work

Our research opens several promising avenues for further investigation. First, while our simulation

evidence demonstrates the superiority of our approach’s finite-sample performance to that of exist-

ing methods, particularly in settings with extensive control unit reuse, a more rigorous theoretical

comparison would enhance our understanding of when and why different inference procedures out-

perform others. Such theoretical analysis could formally characterize the efficiency gains of our

approach relative to alternatives under various data-generating processes and matching configura-

tions.

Second, it is worth exploring improvements to bootstrap procedures specifically designed for

matching estimators. For instance, adapting moving block bootstrap procedures like those described

in Lahiri (2003) could better handle the complex dependency structure induced by overlapping

matches. This approach might preserve the intuitive appeal of bootstrap methods while addressing

their current limitations in the matching context. By explicitly modeling the correlation structure

among matched units, such modified bootstrap procedures could potentially achieve both valid

inference and computational efficiency.
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Appendix

A Proof of Theorem 3.2

Note that

√
nT (τ̂ −Bn − τ) =

√
nT (τSATT − τ)

Population error

+
√
nTEn

measurement error

where En =
(

1
nT

∑
t∈T ϵt − 1

nT

∑
j∈C wjϵj

)
We focus on the population error and the measurement error separately.

First, we focus on the population error. By the Central Limit Theorem (CLT):

√
nT (τSATT − τ)

=
√
nT

(
1

nT

∑
t∈T

(
f1(Xt)− f0(Xt)

)
− EX|Z=1

[
f1(Xi)− f0(Xi) | Zi = 1

])
d−→ N (0, VP )

where

VP = EX|Z=1

[
(f1(Xi)− f0(Xi)− τ)2 | Zi = 1

]
(13)

Second, we focus on the measurement error part. We want to establish the asymptotic normality:

En√
VE

d−→ N(0, 1) (14)

This is equivalent to showing that
√
nTEn

d−→ N(0, VE) conditional on X,Z.

Let us denote ei = (Zi− (1−Zi)Wi)ϵi as the weighted error contribution of the i-th unit, where
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Wi =
∑

t∈T wit when Zi = 0 and Wi = 0 otherwise. Then:

En√
VE

=
1

nT

√
VE

n∑
i=1

ei (15)

To establish the asymptotic normality, we verify the Lindeberg condition for triangular arrays,

for all ϵ > 0:
1

s2n

n∑
i=1

E
[
T 2
n,i1(|Tn,i| > ϵsn) | X,Z

]
→ 0 as n → ∞ (16)

where

Tn,i =
ei

nT

√
VE

E[T 2
n,i | X,Z] =

E[e2i | X,Z]

n2
TVE

=
(Zi − (1− Zi)Wi)

2σ2
i

n2
TVE

and s2n =
∑n

i=1 E[T 2
n,i | X,Z] = 1 1

Hence,

1

s2n

n∑
i=1

E
[
T 2
n,i1(|Tn,i| > ϵsn) | X,Z

]
(17)

=
n∑

i=1

E

[(
ei

nT

√
VE

)2

1

(∣∣∣∣ ei

nT

√
VE

∣∣∣∣ > ϵ

) ∣∣∣∣∣ X,Z

]
(18)

=
1

n2
TVE

n∑
i=1

E
[
e2i · 1(|ei| > ϵnT

√
VE)

∣∣∣ X,Z
]

(19)

Focusing on the i-th summand and applying Hölder’s inequality with conjugate exponents 2+δ
2

1Recall that VE = 1
n2
T

(∑
t∈T σ2

t +
∑

j∈C(wj)
2σ2

j

)
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and 2+δ
δ
:

E
[
e2i · 1(|ei| > ϵnT

√
VE)

∣∣∣ X,Z
]

≤ E
[
|ei|2+δ

∣∣ X,Z
] 2

2+δ · E
[
1(|ei| > ϵnT

√
VE)

∣∣∣ X,Z
] δ

2+δ

= E
[
|ei|2+δ

∣∣ X,Z
] 2

2+δ · P
[
|ei| > ϵnT

√
VE

∣∣∣ X,Z
] δ

2+δ

≤ E
[
|ei|2+δ

∣∣X,Z
] 2

2+δ ·

(
E
[
e2i
∣∣X,Z

]
ϵ2n2

TVE

) δ
2+δ

by Markov’s inequality

= (Zi − (1− Zi)Wi)
2+ 2δ

2+δ ·
E
[
|ϵi|2+δ

∣∣ X,Z
] 2

2+δ · σ
2δ
2+δ

i

ϵ
2δ
2+δ · (n2

TVE)
δ

2+δ

≤ (Zi − (1− Zi)Wi)
2+ 2δ

2+δ · C
2

2+δ · σ
2δ
2+δ
max

ϵ
2δ
2+δ · (

∑2
i=1(Zi − (1− Zi)Wi)2σ2

min)
δ

2+δ

In the last step, we use the bounds from our assumptions: σ2
min ≤ σ2

i ≤ σ2
max from Assump-

tion ??, and the bound E
[∣∣ϵi∣∣ 2+δ ∣∣ Xi = x

]
≤ C from Assumption ??.

Hence, the Lindeberg condition in Equation 19 is upper bounded by

1

n2
TVE

n∑
i=1

(Zi − (1− Zi)Wi)
2+ 2δ

2+δ · C
2

2+δ · σ
2δ
2+δ
max

ϵ
2δ
2+δ · (

∑n
i=1(Zi − (1− Zi)Wi)2σ2

min)
δ

2+δ

 (20)

≤ C
2

2+δ · σ
2δ
2+δ
max

ϵ
2δ
2+δ · σ2

min · (
∑n

i=1(Zi − (1− Zi)Wi)2)
δ

2+δ

n∑
i=1

[
(Zi − (1− Zi)Wi)

2+ 2δ
2+δ

]
(21)

=
C

2
2+δ · σ

2δ
2+δ
max

ϵ
2δ
2+δσ

4+6δ
2+δ

min

·

∑n
i=1

[
(Zi − (1− Zi)Wi)

2+ 2δ
2+δ

]
(
∑n

i=1(Zi − (1− Zi)Wi)2)
2+3δ
2+δ

(22)

=

(
1

n

) δ
2+δ C

2
2+δ · σ

2δ
2+δ
max

ϵ
2δ
2+δσ

4+6δ
2+δ

min

·
1
n

∑n
i=1

[
(Zi − (1− Zi)Wi)

2+ 2δ
2+δ

]
(
1
n

∑n
i=1(Zi − (1− Zi)Wi)2

) 2+3δ
2+δ

(23)

The term
1
n

∑n
i=1

[
(Zi−(1−Zi)Wi)

2+ 2δ
2+δ

]
( 1
n

∑n
i=1(Zi−(1−Zi)Wi)2)

2+3δ
2+δ

is bounded in probability by Markov’s inequality and because

all moments of Wi are bounded according to Lemma 3(i) in Abadie and Imbens (2006). Therefore,

Equation 23 converges to 0 as n → ∞ since
(
1
n

) δ
2+δ → 0. Thus, the Lindeberg condition is satisfied,

establishing asymptotic normality.
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Finally,
√
nTPn =

√
nT (τSATT − τ) and

√
nTEn are asymptotically independent, as the central

limit theorem for
√
nTEn holds conditional on the covariates X and treatment assignment Z. Since

both terms converge to normal distributions and given that VE is bounded and bounded away from

zero by Assumption ??, while VP remains bounded by the properties of the treatment effect function

under Assumption ??, we can conclude that

√
nT (τ̂ −Bn − τ)√

VE + VP

d−→ N(0, 1) (24)

This establishes the asymptotic normality of our estimator after accounting for the bias term.

B Proof of Lemma 4.1

Proof. Let us decompose the difference between our variance estimator and the true average vari-

ance:

S2 − 1

nT

nT∑
t=1

σ2
t =

1

NC

∑
t∈T

|Ct|s2t −
1

nT

nT∑
t=1

σ2
t

=
∑
t∈T

uts
2
t −

1

nT

∑
t∈T

σ2
t

=
∑
t∈T

(uts
2
t −

1

nT

σ2
t )

=
∑
t∈T

(uts
2
t − utσ

2
t )︸ ︷︷ ︸

Term A

+
∑
t∈T

(utσ
2
t −

1

nT

σ2
t )︸ ︷︷ ︸

Term B

where ut =
|Ct|
NC

represents the weight of cluster t in the pooled estimator. Note that

NC =
∑
t∈T

|Ct| (25)

is the total number of matches2.

We first analyze Term A, which measures the difference between the estimated and true variance

2If a control unit is matched to multiple treated units, it contributes to NC multiple times. For example, if a
control unit is matched to three treated units, it adds 3 to NC rather than 1.
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within each cluster. For a fixed treatment t, for each individual matched control j in Ct, we focus

on the summand in s2t =
1

|Ct|−1

∑
j∈Ct(Yj − Ȳt)

2 (introduced in Equation 9) and expand the squared

deviation:

(Yj − Ȳt)
2 =

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk) + ϵj −
1

|Ct|
∑
k∈Ct

ϵk

)2

=

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)2

+ 2

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)(
ϵj −

1

|Ct|
∑
k∈Ct

ϵk

)

+

(
ϵj −

1

|Ct|
∑
k∈Ct

ϵk

)2

Therefore, the difference between the sample variance and the true variance can be written as:

s2t − σ2
t =

1

|Ct| − 1

∑
j∈Ct

(Yj − Ȳt)
2 − σ2

t

=

(
1

|Ct|
∑
j∈Ct

ϵ2j − σ2
t

)
︸ ︷︷ ︸

Sampling error

+
1

|Ct| − 1

∑
j∈Ct

−2ϵj

 1

|Ct|
∑
k∈Ct
k ̸=j

ϵk




︸ ︷︷ ︸
Cross-product of errors

+
1

|Ct| − 1

∑
j∈Ct

[
2

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)(
ϵj −

1

|Ct|
∑
k∈Ct

ϵk

)]
︸ ︷︷ ︸

Interaction between function and errors

+
1

|Ct| − 1

∑
j∈Ct

(f0(Xj)−
1

|Ct|
∑
k∈Ct

f0(Xk)

)2


︸ ︷︷ ︸
Systematic differences within cluster
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Now, Term A becomes the following decomposition:

Term A =

nT∑
t=1

(uts
2
t − utσ

2
t ) where ut =

|Ct|∑nT

t=1 |Ct|

=

nT∑
t=1

ut

|Ct|
∑
j∈Ct

(ε2j − σ2
t )︸ ︷︷ ︸

Sampling error

+

nT∑
t=1

ut

|Ct|
∑
j∈Ct

−2εj

 1

|Ct|
∑
k∈Ct
k ̸=j

εk




︸ ︷︷ ︸
Cross-product of errors

+

nT∑
t=1

ut

|Ct| − 1

∑
j∈Ct

[
−2

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)(
εj −

1

|Ct|
∑
k∈Ct

εk

)]
︸ ︷︷ ︸

Interaction between function and errors

+

nT∑
t=1

ut

|Ct| − 1

∑
j∈Ct

(f0(Xj)−
1

|Ct|
∑
k∈Ct

f0(Xk)

)2


︸ ︷︷ ︸
Systematic differences within cluster

Let’s focus on the first component of Term A, the sampling error:

n1∑
t=1

ut

|Ct|
∑
j∈Ct

(
ε2j − σ2

t

)
=

nc∑
c=1

∑
t∈Tc

1∑nc

c=1K(c)

(
ε2c − σ2

t

)
=

nc∑
c=1

∑
t∈Tc

1∑nc

c=1K(c)

(
ε2c − σ2

c + σ2
c − σ2

t

)
=

1∑nc

c=1K(c)

nc∑
c=1

K(c)
(
ε2c − σ2

c

)
+

1∑nc

c=1K(c)

nc∑
c=1

∑
t∈Tc

(
σ2
c − σ2

t

)

where K(c) represents the number of times control unit c is used across all matches. Note that∑nC

c=1K(c) =
∑nT

t=1 |Ct| = NC is the total number of matches (Equation 25).

For the first term, we can apply Hölder’s inequality and the law of large numbers to show it

converges to zero in probability:

40



Applying Hölder’s inequality with conjugate exponents p and q where 1
p
+ 1

q
= 1 and p > 1:

∣∣∣∣∣ 1∑nc

c=1K(c)

nc∑
c=1

K(c)(ε2c − σ2
c )

∣∣∣∣∣ ≤ 1∑nc

c=1K(c)

(
nc∑
c=1

K(c)p

) 1
p
(

nc∑
c=1

|ε2c − σ2
c |q
) 1

q

=
n
1/p+1/q
c∑nc

c=1K(c)

(
1

nc

nc∑
c=1

K(c)p

) 1
p
(

1

nc

nc∑
c=1

|ε2c − σ2
c |q
) 1

q

=
nc∑nc

c=1K(c)

(
1

nc

nc∑
c=1

K(c)p

) 1
p
(

1

nc

nc∑
c=1

|ε2c − σ2
c |q
) 1

q

Now, we analyze each component:

1. For the ratio nc∑nc
c=1 K(c)

: By the Law of Large Numbers (LLN),
∑nc

c=1 K(c)

nc

p−→ E[K(c)] as nc → ∞.

SinceK(c) ≥ 1 for all c (each control unit is matched at least once), we have E[K(c)] ≥ 1. Therefore:

nc∑nc
c=1 K(c)

p−→ 1
E[K(c)]

< ∞

2. For the term
(

1
nc

∑nc

c=1K(c)p
) 1

p
: By Lemma 3 of Abadie and Imbens (2006), 1

nc

∑nc

c=1 K(c)p
p−→

E[K(c)p] < ∞ for p > 1. The lemma applies because the matching process ensures that K(c) has

finite moments of all orders under standard matching schemes.

3. For the term
(

1
nc

∑nc

c=1 |ε2c − σ2
c |q
) 1

q
: We need to verify that E[|ε2c − σ2

c |q] < ∞ to apply the

LLN. By Assumption ??, E[|εc|2+δ|Xc] ≤ C for some δ > 0 and constant C. For q ≤ 1 + δ
2
, we

can show that E[|ε2c − σ2
c |q] < ∞ using Jensen’s inequality and the fact that σ2

c = E[ε2c |Xc]. By the

LLN, 1
nc

∑nc

c=1 |ε2c −σ2
c |q

p−→ E[|ε2c −σ2
c |q]. Since ε2c −σ2

c is a mean-zero random variable (by definition

of σ2
c ), with q > 1, the expectation E[|ε2c − σ2

c |q] is strictly positive but finite.

Combining these results:

nc∑nc

c=1K(c)

(
1

nc

nc∑
c=1

K(c)p

) 1
p
(

1

nc

nc∑
c=1

|ε2c − σ2
c |q
) 1

q
p−→ 1

E[K(c)]
· E[K(c)p]1/p · E[|ε2c − σ2

c |q]1/q

(26)

By selecting q sufficiently close to 1 (and thus p sufficiently large), and applying Jensen’s in-
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equality:

E[K(c)p]1/p ≤ (E[K(c)]p)1/p ·O(1) (27)

= E[K(c)] ·O(1) (28)

Therefore, as nc → ∞:

nc∑nc

c=1K(c)

(
1

nc

nc∑
c=1

K(c)p

) 1
p
(

1

nc

nc∑
c=1

|ε2c − σ2
c |q
) 1

q
p−→ O(1) · E[|ε2c − σ2

c |q]1/q (29)

As nc → ∞, E[|ε2c−σ2
c |q]1/q → 0 for properly chosen q. This establishes that 1∑nc

c=1 K(c)

∑nc

c=1 K(c)(ε2c−

σ2
c )

p−→ 0.

For the second term:

1∑nc

c=1K(c)

nc∑
c=1

∑
t∈Tc

(σ2
c − σ2

t ) =
1∑nc

c=1K(c)

nc∑
c=1

K(c)(σ2
c − σ̄2

c ) (30)

where σ̄2
c = 1

K(c)

∑
t∈Tc

σ2
t is the average variance of the treated units matched to control unit c,

and K(c) = |Tc| represents the number of treated units to which control unit c is matched.

We can bound this term as follows:∣∣∣∣∣ 1∑nc

c=1K(c)

nc∑
c=1

K(c)(σ2
c − σ̄2

c )

∣∣∣∣∣ ≤ 1∑nc

c=1K(c)

nc∑
c=1

K(c) · max
c=1,...,nc

|σ2
c − σ̄2

c | (31)

= max
c=1,...,nc

|σ2
c − σ̄2

c |
a.s.−−→ 0 as nc, nT → ∞ (32)

where the last convergence follows from Lemma D.2, which establishes the uniform convergence

of variance differences across all control units.
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For the second component of Term A (cross-product of errors):

nT∑
t=1

ut

|Ct|
∑
j∈Ct

−2εj

 1

|Ct|
∑
k∈Ct
k ̸=j

εk




=

nT∑
t=1

ut

|Ct|
∑
j∈Ct

−2εj
1

|Ct|
∑
k∈Ct
k ̸=j

εk


=

nT∑
t=1

1∑nT

t=1 |Ct|
1

|Ct|
∑
j,k∈Ct
j ̸=k

(−4εjεk)

≤ 1∑nT

t=1 |Ct|
∑
j,k∈C
j ̸=k

−4 · K(j, k)

2
εjεk

≤ 1∑nT

t=1 |Ct|
∑
j,k∈C
j ̸=k

−2 ·K(j, k)εjεk

where K(j, k) represents the number of times control units j and k appear together in the same

matched cluster. Since |Ct| ≥ 2 for all clusters (as we exclude singleton clusters), we have 1
|Ct| ≤

1
2
,

which gives us the inequality in the last step.

To establish that (A2)
p−→ 0, we apply the same Hölder’s inequality approach as used for the

sampling error term. Specifically, we can bound:

∣∣∣∣∣∣∣∣
1∑nT

t=1 |Ct|
∑
j,k∈C
j ̸=k

K(j, k)εjεk

∣∣∣∣∣∣∣∣ ≤
1∑nT

t=1 |Ct|

∑
j,k∈C
j ̸=k

K(j, k)p


1
p
∑

j,k∈C
j ̸=k

|εjεk|q


1
q

where 1
p
+ 1

q
= 1 and p > 1. Under our matching schemes, K(j, k) is asymptotically sparse—the

probability that two specific units j and k are repeatedly matched together diminishes as nT in-

creases. Using the technique developed in our analysis of the sampling error term and the properties

of K(j, k) (which is bounded by min{K(j), K(k)}), we can show that the first factor converges to

zero in probability.
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Additionally, while E[εjεk] = 0 due to independence and zero mean of the errors, we need to

be careful about the higher moments in the Hölder’s inequality. When q > 1, E[|εjεk|q] = E[|εj|q] ·

E[|εk|q] is bounded but generally non-zero. However, (A2)
p−→ 0 primarily because E[K(j, k)p] → 0

as nT → ∞ under our asymptotically sparse matching scheme, while E[|εj|q · |εk|q] remains bounded

by Assumption ??. Therefore, (A2)
p−→ 0 as nT → ∞.

For the third component of Term A (interaction between function values and errors):

(A3) =

nT∑
t=1

ut

|Ct| − 1

∑
j∈Ct

[
−2

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)(
εj −

1

|Ct|
∑
k∈Ct

εk

)]

By the Mean Value Theorem and Assumption 6, we can bound the first factor:∣∣∣∣∣f0(Xj)−
1

|Ct|
∑
k∈Ct

f0(Xk)

∣∣∣∣∣ ≤ max
k∈Ct

|f0(Xj)− f0(Xk)|

≤ sup
x∈Ct

|f ′
0(x)| · max

j,k∈Ct
∥Xj −Xk∥

≤ sup
x∈Ct

|f ′
0(x)| · r(Ct)

Therefore:

|(A3)| ≤
nT∑
t=1

ut

|Ct| − 1

∑
j∈Ct

2 · sup
x∈Ct

|f ′
0(x)| · r(Ct) ·

∣∣∣∣∣εj − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣
≤ 2 · sup

t∈T

[
sup
x∈Ct

|f ′
0(x)| · r(Ct)

]
·

nT∑
t=1

ut

|Ct| − 1

∑
j∈Ct

∣∣∣∣∣εj − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣
= 2 · sup

t∈T

[
sup
x∈Ct

|f ′
0(x)| · r(Ct)

]
· 1∑nT

t=1 |Ct|

nC∑
c=1

K(c)

∣∣∣∣∣εc − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣
By Assumption 6, the first term supt∈T [supx∈Ct |f ′

0(x)| · r(Ct)] is bounded by a constant M .

For the remaining term, we can apply a similar Hölder’s inequality argument as developed for

the sampling error term earlier. The structure involves products of K(c) with error differences,

which have the same statistical properties (independence, mean zero) as the ε2c −σ2
c terms analyzed
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above. Following the same steps—applying Hölder’s inequality with conjugate exponents, leveraging

Lemma 3 of Abadie and Imbens (2006) for the moments of K(c), and using the moment bounds

from Assumption ??—we can establish that this term converges to zero in probability as nT → ∞.

Specifically, the weighted error differences satisfy:

1∑nT

t=1 |Ct|

nC∑
c=1

K(c)

∣∣∣∣∣εc − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣ p−→ 0

as nT → ∞, by the convergence properties established in our analysis of the sampling error

term. Therefore, (A3)
p−→ 0 as nT → ∞.

For the fourth and final component of Term A (systematic differences within cluster):

(A4) =

nT∑
t=1

ut

|Ct| − 1

∑
j∈Ct

(f0(Xj)−
1

|Ct|
∑
k∈Ct

f0(Xk)

)2


Similar to our analysis of term (A3), we can apply the Mean Value Theorem to bound each

squared difference:

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)2

≤
(
max
k∈Ct

|f0(Xj)− f0(Xk)|
)2

≤
(
sup
x∈Ct

|f ′
0(x)| · max

j,k∈Ct
∥Xj −Xk∥

)2

≤
(
sup
x∈Ct

|f ′
0(x)| · r(Ct)

)2
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Thus:

|(A4)| ≤
nT∑
t=1

ut

|Ct| − 1

∑
j∈Ct

(
sup
x∈Ct

|f ′
0(x)| · r(Ct)

)2

=

nT∑
t=1

ut · |Ct|
|Ct| − 1

(
sup
x∈Ct

|f ′
0(x)| · r(Ct)

)2

≤ 2 ·
nT∑
t=1

ut

(
sup
x∈Ct

|f ′
0(x)| · r(Ct)

)2

≤ 2 ·
(
sup
t∈T

[
sup
x∈Ct

|f ′
0(x)| · r(Ct)

])2

By Assumption 6, supx∈Ct |f ′
0(x)| ·r(Ct) ≤ M for all t. Furthermore, by Assumption 4 (Shrinking

Clusters), we have limn→∞ supt∈T r(Ct) = 0. Therefore, even if supx∈Ct |f ′
0(x)| is unbounded as

n → ∞, their product with r(Ct) remains bounded by M , and the entire term (A4)
p−→ 0 as

nT → ∞.

For Term B, which involves the difference between the weighted and unweighted average of true

variances:

Term B =

nT∑
t=1

(
utσ

2
t −

1

nT

σ2
t

)
=

nT∑
t=1

(
|Ct|∑nT

t=1 |Ct|
− 1

nT

)
σ2
t

By Assumption ??, we know that σ2
min ≤ σ2

t ≤ σ2
max for all t. Therefore, by the triangle

inequality:

|Term B| ≤
nT∑
t=1

∣∣∣∣ |Ct|∑nT

t=1 |Ct|
− 1

nT

∣∣∣∣σ2
max

= σ2
max

nT∑
t=1

∣∣∣∣ |Ct|∑nT

t=1 |Ct|
− 1

nT

∣∣∣∣
Let ¯|C| = 1

nT

∑nT

t=1 |Ct| be the average cluster size. Then:
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|Term B| ≤ σ2
max

nT∑
t=1

∣∣∣∣ |Ct|
nT · ¯|C|

− 1

nT

∣∣∣∣
=

σ2
max

nT

nT∑
t=1

∣∣∣∣ |Ct|¯|C| − 1

∣∣∣∣
=

σ2
max

nT · ¯|C|

nT∑
t=1

∣∣|Ct| − ¯|C|
∣∣

By the Law of Large Numbers, as nT → ∞, the variability in cluster sizes relative to their mean

diminishes. Specifically, under our assumptions: The Shrinking Clusters Assumption 4 ensures

that all clusters become increasingly homogeneous. For typical matching procedures like M -nearest

neighbor matching, |Ct| = M for all t, making this term exactly zero. For other matching procedures,

the variance of |Ct| relative to nT approaches zero as nT increases.

This means that 1
nT

∑nT

t=1

∣∣|Ct| − ¯|C|
∣∣ p−→ 0 as nT → ∞. Therefore, Term B converges to zero in

probability as nT → ∞, completing our proof that S2 p−→ 1
nT

∑nT

t=1 σ
2
t .

C Proof of Lemma 4.2

Proof. We begin by expanding the pooled variance estimator:

V̂E,lim :=

(
1

nT

nT∑
t=1

σ2
t

)(
1

nT

+
1

ESS(C)

)

=
1

n2
T

nT∑
t=1

σ2
t +

1

nT

nT∑
t=1

σ2
t

(∑
j∈C w

2
j

n2
T

)

=
1

n2
T

nT∑
t=1

σ2
t +

1

n2
T

nT+nC∑
j=nT+1

[
w2

j ·

(
1

nT

nT∑
t=1

σ2
t

)]

The error variance VE can be similarly expanded:
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VE =
1

n2
T

(
nT∑
t=1

σ2
t +

nT+nC∑
j=nT+1

w2
jσ

2
j

)

=
1

n2
T

nT∑
t=1

σ2
t +

1

n2
T

nT+nC∑
j=nT+1

w2
jσ

2
j

To establish asymptotic equivalence, we analyze the difference:

V̂E,lim − VE =
1

n2
T

nT+nC∑
j=nT+1

[
w2

j ·

(
1

nT

nT∑
t=1

σ2
t

)]
− 1

n2
T

nT+nC∑
j=nT+1

w2
jσ

2
j

=
1

n2
T

nT+nC∑
j=nT+1

w2
j ·

[(
1

nT

nT∑
t=1

σ2
t

)
− σ2

j

]

Using the definition of ESS(C), we can rewrite:

V̂E,lim − VE =
1

nT

1

ESS(C)

nT∑
t=1

σ2
t −

1

n2
T

nT+nC∑
j=nT+1

w2
jσ

2
j

We decompose this difference into two terms:

V̂E,lim − VE =

(
1

nT

1

ESS(C)

nT∑
t=1

σ2
t −

1

nT

1

ESS(C)

nT∑
t=1

σ2
t

)
︸ ︷︷ ︸

(I)

+

(
1

nT

1

ESS(C)

nT∑
t=1

σ2
t −

1

n2
T

nT+nC∑
j=nT+1

w2
jσ

2
j

)
︸ ︷︷ ︸

(II)

where σ2
t =

∑
j∈Ct wjtσ

2
j represents the weighted average of variances for control units matched

to treated unit t.

For Term (I), we have:

(I) =
1

nT

1

ESS(C)

nT∑
t=1

(
σ2
t − σ2

t

)
p−→ 0

This convergence follows from Assumption ?? (Continuity/Lipschitz Variance). As the matching

quality improves under Assumption 4 (Shrinking Clusters), the difference between σ2
t and σ2

t dimin-
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ishes because matched control units have variance values increasingly similar to their corresponding

treated units.

For Term (II), we analyze:

1

nT

1

ESS(C)

nT∑
t=1

σ2
t =

1

nT

1

ESS(C)

nT∑
t=1

∑
j∈Ct

wjtσ
2
j

=
1

nT

1

ESS(C)

nT+nC∑
j=nT+1

wjσ
2
j where wj =

nT∑
t=1

wjt

=
1

nT

∑
j∈C w

2
j

n2
T

nT+nC∑
j=nT+1

wjσ
2
j

Substituting this into Term (II):

(II) =
1

n2
T

nT+nC∑
j=nT+1

(∑
j′∈C w

2
j′

nT

wj − w2
j

)
σ2
j

=
1

nT

1

nT

nT+nC∑
j=nT+1

(∑
j′∈C w

2
j′

nT

wj − w2
j

)
σ2
j

Under standard matching procedures, the expression

(∑
j′∈C w2

j′

nT
wj − w2

j

)
is bounded. This

follows from the properties of weights in matching estimators.

Thus, Term (II) can be bounded:

(II) ≤ 1

nT

1

nT

nC

(
C · σ̄2

)
p−→ 0 as nT → ∞

where C is a constant and σ̄2 is bounded by Assumption ??. This convergence holds because

nC

n2
T
→ 0 as nT → ∞ under standard sampling conditions (Assumption 3).

Since both Term (I) and Term (II) converge to zero in probability, we conclude:

∣∣∣V̂E,lim − VE

∣∣∣ p−→ 0 as nT → ∞
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D Other useful Lemmas

D.1 Lemma and Proof of Shrinking Cluster Distance under Compact

Support

Lemma D.1 (Compact Support =⇒ Vanishing Matching Discrepancy). Let X ⊂ Rd be the

support of the covariates X, and assume X is compact. Assume further that the distribution of X

has a density fX(x) that is bounded above and below on X (i.e., 0 < fmin ≤ fX(x) ≤ fmax < ∞ for

all x ∈ X ). Consider any matching procedure that pairs each observation with at least one other

“nearest” neighbor (for example, one-to-M nearest neighbor matching or radius matching with a

fixed caliper). Then as the sample size N → ∞, the maximum distance between any matched units

goes to zero. In particular:

max
i=1,...,N

min
j ̸=i

∥Xi −Xj∥
p−→ 0.

That is, the distance between each observation and its closest match converges to zero in probability

(and in fact, almost surely).

Proof Sketch. This result is a direct consequence of the compactness of X and the bounded-positive

density assumption. The argument follows the intuition of Lemma 1 in ?.

Because X is compact, for any given radius ε > 0 we can **cover X by finitely many small

balls** (or other simple sets) of diameter at most ε. Concretely, by the Heine–Borel covering

theorem, there exists a finite collection of sets {B1, . . . , BR} such that X ⊆
⋃R

r=1Br and each Br

has diam(Br) < ε. For example, one can take Br to be balls (in ∥ · ∥ norm) of radius ε/2, or cubes

of side-length ε, etc., partitioning the space. By construction, for any x, x′ in the same Br, we have

∥x− x′∥ < ε.

Next, because fX(x) ≥ fmin > 0 on X , *every region of X has some probability mass*. In

particular, each Br has Pr(X ∈ Br) > 0. When we draw N i.i.d. observations {Xi}Ni=1, the

expected number of samples falling in Br is N Pr(X ∈ Br), which grows linearly with N . By the

law of large numbers, for large N it is overwhelmingly likely that each Br contains at least one

sample point (indeed, at least ≈ N Pr(X ∈ Br) points). More strongly, since N Pr(X ∈ Br) → ∞,

the probability that any given Br contains **fewer than 2 points** goes to zero as N → ∞. In
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fact, one can apply a union bound or a Poisson approximation to show:

P
(
∃ r : Br contains 0 or 1 points

)
→ 0, as N → ∞.

(Informally: with infinitely many draws, every subset Br will eventually have multiple points due

to the density’s support.)

Now consider any observation i and let Br be one of the covering sets that contains Xi. By the

above argument, for large N that Br will contain at least one **other** observation j ̸= i. Thus,

i has at least one neighbor j with Xj ∈ Br alongside Xi. By the diameter property of Br, the

distance between i and this neighbor j is bounded by ∥Xi − Xj∥ < ε. Since i was arbitrary, we

have shown that **for every i there exists some match j with ∥Xi −Xj∥ < ε** (with probability

→ 1 as N large).

Because ε > 0 was arbitrary, it follows that the maximum matching distance in the sample is

< ε w.p. → 1 for any ε. In probabilistic terms:

Pr
{

max
1≤i≤N

min
j ̸=i

∥Xi −Xj∥ < ε
}

→ 1 ∀ ε > 0,

which is equivalent to maxi minj ∥Xi−Xj∥
p−→ 0. (In fact, one can show almost sure convergence to

0 by invoking the Borel–Cantelli lemma, since the event that a given Br is empty eventually occurs

at most finitely many times.)

This proves that the largest distance within any matched pair (or cluster) converges to zero as

N increases, under the stated assumptions. □

Remark: This lemma provides the theoretical justification for Assumption 4 in our paper. It

confirms that under compact support (and overlap), **common matching methods produce asymp-

totically exact matches**. Notably, nearest-neighbor matching on X yields ∥X̂i−Xi∥ = Op(N
−1/d),

so the discrepancy vanishes as N → ∞. This is analogous to the overlap condition in propensity

score matching, where a bounded propensity support guarantees treated units find control units

with arbitrarily close propensity scores. Conversely, if covariate support were unbounded or the

density went to zero in some region, one could not guarantee such shrinking distances – there would

always be a chance of an isolated observation with no close neighbor (e.g. an outlier), resulting in
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a non-vanishing maximum discrepancy.

D.2 Lemma for Proof of Theorem 4.1

Lemma D.2 (Uniform convergence of variances). Under Assumptions 4 (Shrinking Clusters) and ??

(Continuity/Lipschitz Variance), we have:

max
c=1,...,nc

|σ2
c − σ̄2

c |
a.s.−−→ 0 as nc, nT → ∞ (33)

where σ2
c = σ2(Xc) and σ̄2

c = 1
K(c)

∑
t∈Tc

σ2(Xt) with Tc being the set of treated units matched to

control unit c.

Proof. Let us establish a framework for proving the uniform convergence. For a given sample size

n = nc+nT , define dn as the maximum matching distance such that Tc = {t ∈ T : ∥Xc−Xt∥ ≤ dn}

for each control unit c. Under Assumption 4 (Shrinking Clusters), we have dn
a.s.−−→ 0 as n → ∞.

By Assumption ?? (Continuity/Lipschitz Variance), there exists a Lipschitz constant L such

that:

|σ2(x)− σ2(y)| ≤ L · ∥x− y∥ (34)

for all x, y ∈ X .

For any control unit c, we have:

|σ2
c − σ̄2

c | =

∣∣∣∣∣σ2(Xc)−
1

K(c)

∑
t∈Tc

σ2(Xt)

∣∣∣∣∣
≤ 1

K(c)

∑
t∈Tc

|σ2(Xc)− σ2(Xt)| (by triangle inequality)

≤ 1

K(c)

∑
t∈Tc

L · ∥Xc −Xt∥ (by Lipschitz condition)
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Since all t ∈ Tc satisfy ∥Xc −Xt∥ ≤ dn by construction, we have:

|σ2
c − σ̄2

c | ≤
1

K(c)

∑
t∈Tc

|σ2(Xc)− σ2(Xt)|

≤ 1

K(c)

∑
t∈Tc

L · ∥Xc −Xt∥

≤ L

K(c)

∑
t∈Tc

dn

= L · dn

This inequality holds uniformly for every control unit c, as the Lipschitz constant L applies

across all matches and dn represents the maximum matching distance. Therefore, the maximum

deviation across all control units is bounded by:

max
c=1,...,nc

|σ2
c − σ̄2

c | ≤ L · dn

By Assumption 4, dn
a.s.−−→ 0 as n → ∞. Since L is a finite constant, we conclude:

max
c=1,...,nc

|σ2
c − σ̄2

c |
a.s.−−→ 0 as nc, nT → ∞ (35)

This establishes the uniform convergence of variance differences across all control units.

This establishes the uniform convergence of σ2
c − σ̄2

c across all control units simultaneously, not

merely pointwise convergence for each fixed c.

E Compare the Lipschitz Condition to that in the Existing

Litarature

In the existing literature, the function f(x) is often assumed to be locally Lipschitz on any compact

set X ⊂ R. This implies that for any compact set X = [a, b], there exists a constant LX < ∞ such

that:

|f(x)− f(y)| ≤ LX |x− y|, ∀x, y ∈ X .

53



For example, consider f(x) = x2, where the derivative f ′(x) = 2x. On X = [0, 100], the Lipschitz

constant is:

LX = 2 ·max
x∈X

|x| = 200.

This large constant makes the bound impractical in matching-based inference, where overly conser-

vative bounds can restrict the formation of matched sets.

In contrast, our Derivative Control condition improves on the Lipschitz assumption by explicitly

tying the slope of f(x) to the size of the matched set. Specifically, it requires:

sup
x∈Ct

∣∣f ′(x)
∣∣ · radius(Ct) ≤ M,

where:

• Ct is the matched set for a given t,

• radius(Ct) is the diameter of the matched set in x-space,

• M is a universal constant independent of the matched set size.

This condition offers several practical advantages:

1. Localized Control: Instead of requiring a single large Lipschitz constant LX over a wide range,

our condition focuses on smaller, localized matched sets.

2. Adaptive Bounds: When the derivative f ′(x) is large, our condition naturally enforces smaller

matched set radii to maintain practical bounds. For instance:

If f ′(x) = 100 (as for x = 50), then radius(Ct) ≤
M

100
.

3. Real-World Applicability: In real-world matching problems, matched sets are typically small,

and our condition aligns with this reality by providing sharper, more practical bounds than

the overly conservative Lipschitz constant.

To summarize, while the Lipschitz assumption is valid on compact sets, the associated constants

LX can become impractically large for functions like f(x) = x2 over wide intervals. By explicitly
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accounting for both the derivative and the size of matched sets, our condition provides a more

precise and practical framework for matching-based inference.

F Comparison with Theorem 1 of White (1980)

Our theorem, stated as Theorem ??, differs from Theorem 1 of White (1980) in several key as-

pects. While both results address consistency in variance estimation under heteroskedasticity, the

differences lie in the frameworks, assumptions, and proof strategies.

F.1 Parametric vs. Nonparametric Framework

White’s Theorem 1 is based on a regression model Yi = Xiβ0 + εi, where εi represents independent

but non-identically distributed (i.n.i.d.) errors. The parametric form Xiβ0 is central, and β0 is

estimated via ordinary least squares (OLS). Heteroskedasticity arises through Var(εi | Xi) = g(Xi),

where g(Xi) is a known (possibly parametric) function. In contrast, our theorem relies on a non-

parametric matching estimator for treatment effects, without assuming a parametric form for f(Xi).

Matching is governed by hyperparameters like the number of neighbors or the maximum matching

radius, but these are not estimated from the data in the regression sense. Heteroskedasticity arises

through σ2(Xi), where σ2(·) is a uniformly continuous function.

F.2 White’s Setup: Estimating Var(β̂) vs. Cluster-Based Variance Es-

timation

White’s Theorem 1 focuses on the heteroskedasticity-consistent (HC) covariance matrix estimator

for β̂. It defines the matrix

V̂n =
1

n

n∑
i=1

ε̂2iX
′
iXi, where ε̂i = Yi −Xiβ̂.

White proves V̂n
a.s.−−→ V̄n, where V̄n is the asymptotic covariance matrix of the regressors. Our

theorem, on the other hand, defines cluster-level residual variance estimators s2t for each treated
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unit t ∈ T , given its matched controls Ct. The overall variance estimator is

S2 =
1

nT

nT∑
t=1

s2t , where s2t =
1

|Ct| − 1

∑
j∈Ct

e2tj.

We prove |S2 − 1
nT

∑nT

t=1 σ
2
t |

a.s.−−→ 0, showing consistency for the average cluster variance.

F.3 Homoskedasticity in Matched Clusters vs. General Heteroskedas-

ticity

White’s Theorem 1 allows general heteroskedasticity: Var(εi | Xi) = g(Xi), where g(·) can vary

arbitrarily across observations. Errors are independent but not identically distributed (i.n.i.d.).

Our theorem also allows heteroskedasticity: σ2(Xi) varies with Xi. However, within each matched

cluster {t} ∪ Ct, we assume σ2
j ≈ σ2

t for j ∈ Ct, based on a uniform continuity (or Lipschitz)

assumption on σ2(·).

F.4 Proof Strategy and Key Assumptions

White’s proof strategy relies on expanding V̂n − V̄n and showing that

V̂n − V̄n =
1

n

n∑
i=1

(
ε̂2iX

′
iXi − E[ε2iX

′
iXi]

) a.s.−−→ 0.

White uses assumptions on finite moments of εi and Xi (Assumptions 2–4 in White (1980)) and

uniform integrability conditions. Our proof, in contrast, relies on showing that for matched clusters

{t} ∪ Ct, the residual variance s2t converges to the true variance σ2
t . We leverage uniform continuity

of σ2(·) to argue that σ2
j → σ2

t as ∥Xtj − Xt∥ → 0. We then apply a version of the Law of Large

Numbers (LLN) for matched clusters.

F.5 Summary of Differences

The key differences between White’s theorem and our theorem can be summarized as follows.

First, White’s theorem is regression-based, while our theorem is matching-based. Second, White
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assumes a parametric model Yi = Xiβ0 + εi, whereas our model assumes a nonparametric f1(X),

f0(X). Third, White’s focus is on a robust covariance estimator for β̂, while ours is on residual

variance from matched clusters. Fourth, White allows fully general g(Xi), whereas our clusters

assume approximate homoskedasticity (σ2
j ≈ σ2

t ). Finally, White’s framework has no matching

hyperparameters, while ours depends on predefined criteria for matching (e.g., number of neighbors

or radius).

G Full Simulation Settings

G.1 Simulation Settings for Caliper Matching

G.1.1 Data-Generating Process

Covariates. We simulate:

• Fifty treated units, each drawn from multivariate normal distributions centered at (0.25, 0.25)

and (0.75, 0.75), with covariance matrices0.12 0

0 0.12

 .

• Two hundred and twenty-five control units, each from multivariate normal distributions cen-

tered at (0.25, 0.75) and (0.75, 0.25), also with covariance matrices0.12 0

0 0.12

 .

• One hundred additional control units distributed uniformly on the unit square [0, 1]× [0, 1] to

ensure an adequate overlap region.

Outcomes. For each unit with covariates (x1, x2), we generate an outcome via:

Y = f0(x1, x2) + Z · τ(x1, x2) + ϵ,
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where:

• f0 is the density function for a multivariate normal distribution centered at (0.5, 0.5) with

covariance matrix  1 0.8

0.8 1

 .

• τ(x1, x2) = 3x1 + 3x2 is the true treatment effect.

• ϵ ∼ N(0, 0.52) is homoskedastic measurement error.

Overlap Variation. We vary the degree of overlap by increasing the proportion of control units

drawn uniformly from the unit square and reducing those centered at (0.25, 0.75) and (0.75, 0.25).

For each overlap configuration, we run 500 Monte Carlo trials.

G.1.2 Matching and Estimation

Matching is performed using a synthetic-control-like optimization within local neighborhoods (calipers).

We use an adaptive strategy for the caliper size: shrinking it to select no more than five units in

dense regions, and expanding it to include at least one unit in sparse regions. With larger calipers,

the optimization often selects only a few control units, which can be distant from the treated point.

We refer readers to Che et al. (2024) for details.
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G.2 Simulation Settings for Bootstrap Variance Estimation

G.2.1 Data-Generating Process

The Data Generating Process (DGP) is defined as:

{Yi, Zi, Xi}Ni=1 ,

Yi(1) = τ +m (∥Xi∥) + ϵi, Yi(0) = m (∥Xi∥) + ϵi,

Zi = I {P (Xi) ≥ vi} , vi ∼ U [0, 1],

P (Xi) = γ1 + γ2 ∥Xi∥ , Xi = (X1i, . . . , Xki)
′ ,

Xji = ξi |ζji| / ∥ζi∥ for j = 1, . . . , k,

ξi ∼ U [0, 1], ζi ∼ N (0, Ik) , ϵi ∼ N
(
0, 0.22

)
,

The function m(z) is defined as:

m(z) = 0.4 + 0.25 sin(8z − 5) + 0.4 exp
(
−16(4z − 2.5)2

)
3

Additional parameters include: Treatment Model Parameters: γ1 = 0.15, γ2 = 0.7; True Effect:

τ = 0; Number of Replicates: 100; Estimand: Average Treatment Effect on the Treated (ATT).

G.2.2 Matching Method and Point Estimator

We implement the paper’s matching procedure using 8 nearest neighbors (8-NN) with uniform

weighting, assigning a weight of 1/8 to each matched control unit.

Given a matching procedure, we define the matching estimator for the ATT as:

τ̂(w) =
1

nT

∑
t∈T

(
Yt −

∑
j∈Ct

wjtYj

)
(36)

where Ct is the set of matched controls, and wjt represents the weight assigned to control unit j

3This is curve 6 in Otsu and Rai (2017).
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when matched to treated unit t.

G.2.3 Debiasing Method

A debiasing model estimates the conditional mean function µ(z, x) = E[Y | Z = z,X = x]. It is

used to offset the bias to achieve valid inference (see Section 3.4 for discussion of the issue). The

debiased estimator is defined as:

τ̃(w) =
1

nT

∑
t∈T

(
Yt − µ̂(0, Xt)−

∑
j∈Ct

wjt(Yj − µ̂(0, Xj))

)
(37)

Additional implementation details include:

• Model Choice: Linear model

• Training Data: Control data only

• Cross-fitting: Implemented by dividing the control data into two halves

G.2.4 Variance Estimators

Bootstrap Variance Estimator.

• Step 1: Use data with Zi = 0 to construct µ̂(0, x) = Ê[Y |Z = 0, X = x].

• Step 2: Construct debiased estimate for each treated unit t ∈ T :

τ̃t = (Yt − µ̂(0, Xt))−
∑
j∈Ct

wjt(Yj − µ̂(0, Xj))

• Step 3: Construct the debiased estimator: τ̃ = 1
nt

∑
t∈T τ̃t

• Step 4: Construct the debiased residuals Rt = τ̃t − τ̃

• Step 5: Perform Wild bootstrap on {Rt} with special sampling weights

• Step 6: Construct confidence interval from bootstrap distribution
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Pooled Variance Estimator.

• Step 1: Obtain the debiased estimator τ̃t

• Step 2: Estimate the variance using:

V̂ = S2

(
1

nT

+
1

ESS(C)

)
(38)

where S2 is a pooled variance estimator across clusters of treated and matched controls

• Step 3: Construct the 95% confidence interval by τ̃ ± 1.96 ∗
√

V̂

G.3 Kang and Schafer Simulation Settings

G.3.1 Data-Generating Process

The Kang and Schafer data generating process is structured as follows:

1. Generate latent covariates Z1, Z2, Z3, Z4 ∼ N (0, I4) where I4 is the 4× 4 identity matrix.

2. Calculate propensity scores:

p(Z) =
1

1 + exp(Z1 − 0.5Z2 + 0.25Z3 + 0.1Z4)
(39)

3. Generate treatment assignment as T ∼ Bernoulli(p(Z)).

4. Define the outcome model:

f0(Z) =
210 + 27.4Z1 + 13.7Z2 + 13.7Z3 + 13.7Z4

50
(40)

5. Generate potential outcomes with treatment effect τ :

Y (0) = f0(Z) + ϵ (41)

Y (1) = f0(Z) + τ + ϵ (42)

where ϵ ∼ N (0, 1).
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6. The observed outcome is:

Y = Y (0)(1− T ) + Y (1)T = f0(Z) + τ · T + ϵ (43)

7. Transform the latent covariates Z to create the observed covariates X:

X1 = exp(Z1/2) (44)

X2 =
Z2

1 + exp(Z1)
+ 10 (45)

X3 =

(
Z1 · Z3

25
+ 0.6

)3

(46)

X4 = (Z2 + Z4 + 20)2 (47)

In our simulations, we use n = 500 observations and set the true treatment effect τ = 0.
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