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Abstract

Matching estimators are widely used in causal inference, but valid inference based on them

remains challenging. Classical results show that matching estimators have non-negligible bias

and nonstandard asymptotics, while resampling approaches such as the bootstrap fail to cap-

ture their distributional properties. Recent work, most notably Otsu and Rai (2017), developed

wild bootstrap procedures that are asymptotically valid, but in practice these methods can

exhibit severe undercoverage for a wide range of sample sizes in realistic designs, where the

asymptotics do not kick in until the sample sizes are enormous.

In this paper, we refine existing solutions along three fronts. First, we establish a central

limit theorem that extends the class of valid matching procedures, including nearest neigh-

bor, radius, caliper, and synthetic-control-based matching, under general heteroskedastic error

structures. Our martingale-based proof weakens the regularity conditions required for asymp-

totic normality. Second, we propose a simple and computationally efficient variance estimator

that only requires treated-to-control matching, making it practical in applications with large

control pools, with full theoretical justification provided. Third, we demonstrate through ex-

tensive simulations that these refinements translate into major improvements in finite-sample

∗Corresponding author: xmeng@g.harvard.edu. Postdoctoral Fellow at Dana-Farber Cancer Institute. Work

done while completing Ph.D. in the Department of Statistics, Harvard University.
†Associate Professor, Department of Mathematics and Statistics, University of Ottawa.
‡Professor, Harvard Graduate School of Education.

1



coverage: our method achieves near-nominal coverage rates (94–99%) in designs where state-

of-the-art bootstrap methods can under-cover by 20 percentage points, even with thousands

of observations.

By combining theoretical justification with strong non-asymptotic performance, our frame-

work provides a practical and reliable solution for inference with matching estimators. An R

package implementing our method is available at https://github.com/jche/scmatch2.

1 Introduction

Matching and weighting estimators are fundamental tools in causal inference for estimating treat-

ment effects from observational data. These methods enable researchers to draw population-level

inferences about treatment effects by comparing treated units with similar control units based on

observed covariates (Rosenbaum and Rubin, 1983; Rubin, 1973) or by reweighting observations

to achieve covariate balance (Hirano et al., 2003; Imbens, 2004). Valid population inference—the

ability to generalize findings beyond the specific sample to the broader population—is crucial for

policy decisions and scientific understanding across diverse fields including economics (Dehejia and

Wahba, 1999; Heckman et al., 1997), epidemiology (Stuart, 2010), and policy evaluation (Smith

and Todd, 2005).

The foundational asymptotic theory for matching was established by Abadie and Imbens (2006),

who showed that matching estimators exhibit nonstandard behavior and slower bias decay than

other nonparametric methods. This prompted further developments in bias correction (Abadie and

Imbens, 2011) and martingale representations for inference (Abadie and Imbens, 2012). At the

same time, Abadie and Imbens (2008) demonstrated that the standard bootstrap fails for matching

estimators, motivating alternatives such as the wild bootstrap proposed by Otsu and Rai (2017).

That procedure is asymptotically valid and represents the current state-of-the-art. However, as we

show through simulations, it can produce unreliable inference in finite samples—sometimes missing

nominal coverage by 20 percentage points even in moderately large datasets.

There is also a long tradition of practice-oriented guidance. Hill and Reiter (2006) com-

pared interval estimators for one-to-one matching with replacement, noting instability in standard

“matched-pairs” formulas. Austin and Cafri (2020) developed sandwich estimators for survival out-
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comes under matching with replacement. Bodory et al. (2020) provided a systematic finite-sample

comparison, highlighting cases where bootstrap methods perform well and others where they un-

derperform. Closest to our work, Abadie and Spiess (2022) study regression after matching and

emphasize the importance of accounting for induced dependence. Their analysis and ours share the

insight that valid inference requires constructing variance estimates within matched clusters. The

key difference lies in how the error process is proxied: their robust standard errors rely on residuals

from a post-matching regression, which delivers consistency only under correct specification of the

regression model. By contrast, our estimator is fully model-free, using within-cluster dispersion

of control outcomes as error proxies, and therefore remains consistent without requiring correct

outcome model specification.

This paper revisits the inference problem for matching with refinements that yield both new

theoretical insights and substantial empirical improvements. Our contributions are threefold. First,

we establish a central limit theorem for a broad class of matching procedures—including nearest

neighbor, radius, caliper, and synthetic-control-based matching—under weak dependence induced

by matching. Our martingale-based proof generalizes and strengthens earlier results by introduc-

ing novel regularity conditions that expand the class of procedures known to be valid. Second,

we decompose the asymptotic variance into two interpretable components: sampling variability

from residual outcome noise and population variability from treatment effect heterogeneity. This

decomposition clarifies the distinct roles of different uncertainty sources in driving estimator vari-

ability. Third, we propose a computationally simple and theoretically justified variance estimator

that discovers a key covariance correction term capturing the interaction between control weights

and error variance heterogeneity. Unlike the classical estimator of Abadie and Imbens (2006), our

approach requires only treated-to-control matching, and unlike bootstrap methods, it maintains

validity across challenging scenarios. Our simulation evidence demonstrates that these refinements

translate to dramatically better finite-sample coverage performance: in the nonlinear setting of

Otsu and Rai (2017) with sample sizes up to 5,000, our method maintains 96.3% coverage while

the wild bootstrap achieves only 75.2%.

The remainder of this paper is organized as follows. Section 2 establishes the problem setup, in-

troducing our notation, assumptions, and the matching estimator for the average treatment effect on

the treated. Section 3 develops the inference framework, analyzes the bias-variance decomposition
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of the matching estimator, establishes conditions for asymptotic normality, and presents our cen-

tral limit theorem. Section 4 introduces our variance estimator, begins with the derivative control

condition that generalizes previous assumptions, develops the estimator under both homogeneous

and heterogeneous error structures, and proves its consistency.

The remainder of this paper is organized as follows. Section 2 establishes the problem setup, in-

troducing our notation, assumptions, and the matching estimator for the average treatment effect on

the treated. Section 3 develops the inference framework, analyzing the bias-variance decomposition

of the matching estimator, establishing conditions for asymptotic normality, and presenting our cen-

tral limit theorem. Section 4 introduces our variance estimator, begins with the derivative control

condition that generalizes previous assumptions, develops the estimator under both homogeneous

and heterogeneous error structures, and proves its consistency. We also compare our approach with

existing methods in the literature. Section 5 presents simulation evidence showing that our method

maintains proper coverage while the wild bootstrap fails under control unit reuse, using both the

challenging nonlinear setting of Otsu and Rai (2017) and the multi-dimensional design of Che et al.

(2024). Section 6 applies our method to evaluate an education program in Brazil, illustrating how

proper variance estimation affects substantive conclusions in practice. Section 7 concludes with

a discussion of extensions and future research directions. Technical proofs and additional results

appear in the appendix.

2 Problem Setup and Overview of Main Results

We consider a setting with n observations, each representing a unit in our study population. The

sample consists of nT treated units and nC control units, with n = nT + nC .

For each unit i, we observe a tuple {Zi, Yi,Xi} where:

• Zi ∈ {0, 1} denotes its binary treatment status.

• Yi ∈ R denotes its observed real-valued outcome.

• Xi ≡ {X1i, . . . , Xki}T ∈ Rk denotes its k-dimensional real-valued covariate vector.

We adopt the potential outcomes framework where each unit has two potential outcomes: Yi(1)

and Yi(0). Here, Yi(1) represents the outcome if unit i receives treatment, and Yi(0) represents the
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outcome if unit i does not receive treatment. The fundamental problem of causal inference is that

we only observe one of these potential outcomes for each unit. Specifically, the observed outcome

for unit i is Yi ≡ (1−Zi)Yi(0)+ZiYi(1) under the stable unit treatment value assumption (SUTVA).

We assume the data consist of i.i.d. draws of tuples (Yi(0), Yi(1), Zi,Xi) from a common distri-

bution that does not depend on the sample size n. For each unit i, the generic random variables

(Y (0), Y (1), Z,X) represent the population distribution from which the observed data are drawn.

Throughout the paper, indexed variables (e.g., Xi) refer to specific observations, while non-indexed

variables (e.g., X) refer to the generic random variables representing the population distribution.

We further assume a model where potential outcomes are generated as:

Yi(0) = f0(Xi) + ϵ0,i

Yi(1) = f1(Xi) + ϵ1,i,

where fz(x) = E[Y (z) | X = x] for z ∈ {0, 1} denote the response surfaces (Hahn et al., 2020;

Hill, 2011) under treatment and control. The error terms ϵ0,i and ϵ1,i represent the deviations of

the individual potential outcomes from their respective conditional expectations, with conditional

variances σ2
0,i and σ2

1,i respectively. Further distributional assumptions about these error terms are

detailed in Section 3.2.

Our estimand of interest is the average treatment effect on the treated (ATT):

τ = E
[
f1(Xi)− f0(Xi) | Zi = 1

]
.

We can further decompose the individual treatment effect as

Yi(1)− Yi(0) = τ(Xi) +
(
ϵ1,i − ϵ0,i

)
,

where τ(Xi) = f1(Xi) − f0(Xi) captures the systematic component of treatment effect variation

explained by covariates, while the residual term (ϵ1,i − ϵ0,i) represents idiosyncratic noise. This dis-

tinction between systematic and idiosyncratic variation will later play a central role in our variance

decomposition.
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2.1 Matching Estimator

We write the set of all treated units’ indices as T = {i : Zi = 1}, the set of all control units’ indices

as C = {i : Zi = 0}, and t ∈ T , j ∈ C as individual treated and control units respectively. For each

treated unit t ∈ T , let Ct ⊆ C denote an arbitrary set of control units assigned as its matches; the

collection {Ct : t ∈ T } is then called a matching. Finally, we denote the size of a set S as |S|. The

matching estimator of the ATT takes the form

τ̂(w) =
1

nT

∑
t∈T

(
Yt −

∑
j∈Ct

wjtYj

)
, (1)

where wjt ∈ [0, 1] is the weight assigned to the matched control unit j for treated unit t, with∑
j∈Ct wjt = 1 for each t ∈ T . This formulation encompasses many common procedures: for

instance, in M -nearest neighbor matching (Rubin, 1973; Abadie and Imbens, 2006; Stuart, 2010),

each Ct consists of the M nearest controls to t with equal weights wjt = 1/M , while in synthetic-

control-style matching Che et al. (2024), wjt is chosen by solving an optimization problem to

approximate Xt by a convex combination of {Xj : j ∈ Ct}.

2.2 Variance Estimator (Proposed)

A central difficulty in inference for τ̂(w) is variance estimation. Classical bootstrap methods fail

because they do not capture the complex reuse of controls, while analytic estimators such as Abadie

and Imbens (2006) require matching within both treatment groups, which is computationally heavy

and rarely used in practice.

We propose a variance estimator that is both simple and practical. Our construction focuses

first on the measurement error component of the variance, which arises from the noise terms ϵ1,i

and ϵ0,i. Formally, this component takes the form

VE =
1

n2
T

(∑
t∈T

σ2
1,t +

∑
j∈C

(wj)
2σ2

0,j

)
.

Here σ2
z,t = V ar(ϵz,t | Xt) denotes the conditional variance of the treated and control potential

outcome for treated unit t, σ2
0,j = V ar(ϵ0,j | Xj) is the corresponding conditional variance of the
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control potential outcome for control unit j, and wj =
∑

t∈T wjt is the total weight assigned to

control unit j across all treated units in the matching.

This measurement error component represents the fundamental randomness in outcomes even

after systematic covariate adjustment. Ignoring it leads to severe underestimation of uncertainty.

Later (Section 3), we show how this component combines with an additional population heterogeneity

component to yield the total variance of τ̂(w).

To estimate the measurement error component, we use within-cluster variation of control out-

comes as model-free proxies for error variance. For each treated unit t, define

s2t =
1

|Ct| − 1

∑
j∈Ct

(Yj − Ȳt)
2, Ȳt =

1

|Ct|
∑
j∈Ct

Yj.

Our plug-in estimator is then

V̂E =
1

n2
T

(∑
t∈T

s2t +
∑
j∈C

(wj)
2s2j

)
. (2)

Here the first term aggregates within-cluster variances across treated units, while the second term

adjusts for the reuse of controls: heavily reused controls with large wj contribute disproportionately

to the variance of τ̂(w).

This estimator has two attractive features: (i) it is computationally efficient, requiring only

treated-to-control matching; (ii) it is model-free, relying only on empirical dispersion rather than

regression residuals

In Section 4, we show that V̂E consistently estimates the measurement error component, and

extend it to the full variance estimator V̂ that also incorporates treatment effect heterogeneity. We

now turn from variance estimation to the broader inference problem: what conditions are required

for τ̂(w) to be asymptotically normal, and how the different variance components together determine

its limiting distribution.
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3 The Inference Problem

We now turn to inference for τ̂(w). The goals of this section are threefold: (i) introduce the assump-

tions needed for asymptotic analysis, (ii) establish a bias–variance decomposition that clarifies the

roles of systematic bias, sampling error, and population heterogeneity, and (iii) present our central

limit theorem that delivers a variance formula V . In the following section, we will then show how

to consistently estimate V in practice.

To construct valid confidence intervals for our matching estimator τ̂ , we require asymptotic

normality of the form: √
nT (τ̂ − τ)

V −1/2

d−→ N(0, 1).

The difference between the matching estimator τ̂(w) (defined in Equation (1)) and the estimand

τ can be decomposed into three components:

τ̂(w)− τ = τ̂(w)− τSATT + τSATT − τ = Bn + En + Pn (3)

where τSATT is the sample average treatment effect on the treated (SATT):

τSATT =
1

nT

∑
t∈T

(
f1(Xt)− f0(Xt)

)
.

Bn =
1

nT

∑
t∈T

∑
j∈Ct

wjt

(
f0(Xt)− f0(Xj)

)
represents bias from imperfect covariate matching.

En =
1

nT

∑
t∈T

(
ϵt −

∑
j∈Ct

wjtϵj

)
=

1

nT

∑
t∈T

ϵt −
1

nT

∑
j∈C

wjϵj

captures measurement error from random variation in unobserved factors.

Pn = τSATT − τ

measures representation error between sample and population treatment effects.
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where wj =
∑

t∈T wjt is the total weight assigned to control unit j across all matched treated units.

3.1 Assumptions

To proceed, we require a set of conditions on the covariates, treatment assignment, and matching

procedure.

Assumption 1 (Compact support). The covariate vector X is a k-dimensional random vector

with a density with respect to Lebesgue measure on Rk with compact support X. The density of X

is bounded and bounded away from zero on its support.

The compact support assumption helps ensure that the covariate space is well-behaved, which

facilitates consistent estimation and rules out pathological cases where the distribution of covariates

becomes too sparse or unbounded.

Assumption 2 (Unconfoundedness and overlap (Rubin, 1974)). For almost every x ∈ X there

exists η > 0 such that

1. (Y (1), Y (0)) ⊥⊥ Z | X,

2. η < Pr(Z = 1 | X = x) < 1− η.

This assumption states that, conditional on the observed covariates, treatment assignment is

independent of the potential outcomes, and that both treated and control units are sufficiently

represented across the covariate space. By the law of large numbers, it follows that nT/n → Pr(Z =

1) and nC/n → 1− Pr(Z = 1) almost surely, and hence nT/nC → θ for some θ ∈
(

η
1−η

, 1−η
η

)
.

Define the matching radius for a treated unit t with covariate value Xt as:

r (Ct) = sup
j∈Ct

∥Xt −Xj∥ .

This radius represents the maximum distance between a treated unit and any of its matched

controls. The probabilistic properties of this radius will be crucial for establishing our theoretical

results.
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Assumption 3 (Exponential Tail Condition). Let r(Ct) denote the (random) radius used for treated

unit t, i.e., the maximum ℓ2-distance from Xt to the controls in Ct. There exist constants C1 ≥ 1

and C2 > 0, not depending on n, such that for all u ≥ 0 and all treated t,

Pr
(
n
1/k
C r(Ct) > u

)
≤ C1 exp

(
−C2 u

k
)
.

This assumption requires that the probability of a large scaled radius decays at a Weibull-

k rate, exp(−cuk). The shape parameter k reflects the covariate dimension, so higher k implies

faster decay. Intuitively, this ensures increasingly accurate matches as n grows. Equivalently,

P
(
nCr(Ct)k > t

)
≤ C1e

−C2t, where r(Ct)k approximates the volume of the matched region. Abadie

and Imbens (2006) show that the number of times a control is reused, K(j), is of order nCr(Ct)k,

so bounding this volume stabilizes reuse and underpins the CLT.

Many matching methods satisfy this condition. For fixed M -nearest neighbor matching, Abadie

and Imbens (2006, proof of Lemma 3, p. 262) show it holds when covariates have bounded over-

lapping density, since the matching radius shrinks predictably with n. Radius matching with a

data-adaptive caliper, such as the M -th nearest neighbor distance, also yields the required Weibull-

k bound. In practice, researchers often choose the caliper by inspecting nearest-neighbor distance

histograms (Che et al., 2024), which balances coverage and radius size.

Remark on bias. A crucial challenge in matching is that Bn shrinks at the slow rate Op(n
−1/k
T )

(Abadie and Imbens, 2006), slower than the n
−1/2
T rate of conventional CLTs. Because our focus is

on variance estimation, we take this fact as given and refer readers to Abadie and Imbens (2011)

for explicit bias-corrected estimators.

3.2 Error Variance Assumptions

To analyze the large-sample behavior of V̂ , we also require structure on the conditional error

variances. Importantly, we impose only moment bounds; Gaussianity of the errors is not required.

Let us denote the conditional variances of the potential outcomes as:

σ2
0,i = σ2

0(Xi) = E
[(
Yi(0) − f0(Xi)

)2 ∣∣ Xi

]
= E[ϵ20,i |Xi],

σ2
1,i = σ2

1(Xi) = E
[(
Yi(1) − f1(Xi)

)2 ∣∣ Xi

]
= E[ϵ21,i |Xi].

(4)
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We now define a class of variance functions with properties that enable consistent estimation in

the matched setting.

Definition 3.1 (Regular variance function). A function σ2 : X → R+ is said to be a regular

variance function if it satisfies the following:

• Uniform continuity. σ2(·) is uniformly continuous (or Lipschitz) on the support X ⊂ Rd

of X.

• Boundedness. There exist constants 0 < σ2
min < σ2

max < ∞ such that

σ2
min ≤ σ2(x) ≤ σ2

max for all x ∈ X .

• Higher-order moment bound. There exists a constant C < ∞ and an exponent δ > 0

such that

sup
x∈X

E
[∣∣ϵi∣∣ 2+δ ∣∣ Xi = x

]
≤ C.

Here ϵi generically denotes either ϵ0,i or ϵ1,i.

The first condition ensures that matched units have similar variances. Specifically, for any

matching scheme with ∥Xtj−Xt∥ → 0 (as guaranteed by Assumption 3), we have σ2(Xtj) → σ2(Xt).

Hence, σ2
j ≈ σ2

t for j ∈ Ct whenever Ct is constructed by matching on X. In particular,

max
j∈Ct

∣∣σ2(Xtj) − σ2(Xt)
∣∣ −→ 0,

provided that maxj∈Ct ∥Xtj − Xt∥ → 0. Definition 3.1 generalizes Assumption 4.1 in Abadie and

Imbens (2006), which assumes Lipschitz continuity.

The boundedness condition ensures that the conditional variance is bounded away from both

zero and infinity, preventing degeneracy and controlling the influence of outliers. The third condition

imposes a uniform bound on a higher-order conditional moment of the errors. This assumption is

standard in high-dimensional estimation and facilitates the use of maximal inequalities and uniform

convergence tools.

We now formally state the assumption we make on the conditional variances of the potential

outcomes:
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Assumption 4 (Regular error variances). Both σ2
0(x) and σ2

1(x) are regular variance functions.

3.3 Decomposition of Asymptotic Variance Components

From Equation (3), τ̂(w) − τ decomposes into bias Bn, measurement error En, and heterogeneity

Pn. The latter two terms drive the asymptotic variance once bias is subtracted.

Measurement Error Component VE. We first consider the component due to residual outcome

noise. Conditional on the covariates X and treatment assignment vector Z, the variance of En is

given by:

VE :=E[E2
n | X,Z]

=
1

n2
T

(∑
t∈T

σ2
1,t +

∑
j∈C

(wj)
2σ2

0,j

)
,

(5)

where wj =
∑

t∈T wjt is the total weight assigned to control unit j across all matched treated units.

The first term reflects the direct contribution of treated units through their outcome variances,

while the second term captures how control units contribute via squared weight accumulation.

Notably, reused controls (with large wj) disproportionately affect the overall variance, creating a

fundamental bias-variance tradeoff in matching. Prior work including Kallus (2020) and Che et al.

(2024) leverage this variance structure to study how tighter matches (which reduce bias) can increase

variance due to heavy reuse of control units.

Population Heterogeneity Component VP . The second term Pn = τSATT − τ captures how

the realized sample of treated units may differ from the target population of treated units. That is,

even if outcomes were observed without error, the sample ATT may deviate from the population

ATT due to treatment effect heterogeneity.

We define the population heterogeneity component as the asymptotic variance of Pn:

VP :=
1

nT

E
[
(τ(Xi)− τ)2 | Zi = 1

]
. (6)

We can verify that Pn has asymptotic variance VP as defined above. This depends only on the

dispersion of treatment effects among treated units, and vanishes under homogeneous treatment
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effects.

3.4 The Central Limit Theorem

We now present our main asymptotic normality result, which forms the basis for valid inference.

Theorem 3.2 (Central Limit Theorem). Under Assumptions 1, 2, 3 and 4, as nT → ∞:

√
nT

(
τ̂ −Bn − τ

)
V −1/2

d−→ N(0, 1),

where

V = nT · (VE + VP ).

When k ≤ 2, the bias term Bn shrinks faster and can be ignored, yielding the same CLT without

bias correction.

Proof: See Appendix A.

This theorem extends the seminal results of Abadie and Imbens (2006) by covering a broader

class of matching estimators. In particular, it applies to procedures beyond fixedM -nearest neighbor

with uniform weights, including radius matching, caliper matching, and synthetic-control–style

weights. Our framework accommodates a wide range of weighting schemes and clarifies the variance

decomposition in terms of measurement error and treatment effect heterogeneity.

Our proof approach builds on the martingale representation of Abadie and Imbens (2012) but

refines it by incorporating the drift term required for a valid martingale CLT. This refinement

allows us to handle the dependence created by control reuse more directly and to establish asymp-

totic normality under weaker regularity conditions. Together, these results provide a more general

theoretical foundation for inference with modern matching methods.

For practical inference, we therefore need a consistent estimator V̂ of V , which is the focus of

Section 4.
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4 The Standard Error Estimator

In Section 3.4, we established a CLT for the matching estimator τ̂(w) with asymptotic variance

V = nT (VE + VP ). To use this result in practice, we need a consistent estimator of V . Because

V decomposes into the measurement error component VE and the heterogeneity component VP ,

our strategy is to begin with VE, which presents the main technical challenge, and then extend the

estimator to cover VP .

4.1 Consistent Estimation of VE

We now turn to the construction of an estimator for VE. We first state the assumptions that make

estimation feasible, then introduce two estimators. The first is a straightforward plug-in estimator

based on cluster residuals. The second rewrites the estimator into a pooled-variance form motivated

by homoskedasticity (a t-test–like variance) with an additional covariance adjustment that captures

heteroskedasticity. We show that both estimators are asymptotically equivalent and consistent.

Assumption 5 (Smoothness of outcome regression). The regression function f is continuously

differentiable on the compact support X of X.

This mild smoothness assumption ensures that f ′ is bounded on X, which will be used in

bounding approximation errors within matched clusters.

Assumption 6 (Estimable Treatment Variance). We assume that the conditional variances of the

potential outcomes are related in a way that allows estimation from control unit residuals:

σ2
0,i = σ2

1,i = σ2
i .

Furthermore, we assume σ2
i is regular in the sense of Definition 3.1.

This assumption underpins the entire estimation strategy in this section. It allows us to estimate

the unobservable treated variances σ2
1,i using the corresponding control variances, which can be

recovered from matched control outcomes.
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4.1.1 Estimator 1: Direct Plug-in

Recall from Equation 5 that the measurement error variance is given by:

VE = E[E2
n | X,Z]

=
1

n2
T

(∑
t∈T

σ2
1,t +

∑
j∈C

(wj)
2σ2

0,j

)

=
1

n2
T

(∑
t∈T

σ2
t +

∑
j∈C

(wj)
2σ2

j

)
,

where the last equality is due to Assumption 6, and wj =
∑

t∈T wjt is the total weight assigned to

control unit j across all matched treated units.

A natural approach is to estimate the individual variances σ2
t and σ2

j using cluster-based residual

variance estimates. For each matched cluster consisting of treated unit t and its matched controls

Ct, we define a cluster as the set {t}∪Ct. For control units j that belong to multiple clusters (i.e., are

reused across different treated units), we allow such overlap and assign j to one cluster arbitrarily

for the purpose of defining s2j .
1 The residual variance for cluster t is defined to be:

s2t =
1

|Ct| − 1

∑
j∈Ct

(
Yj − Ȳt

)2
, where Ȳt =

1

|Ct|
∑
j∈Ct

Yj. (7)

This approach uses only control outcomes because we use the difference between individual

control outcomes and their cluster mean as the error proxy. Importantly, this cluster mean Ȳt is

not obtained from any parametric model but rather from the empirical average within the matched

set, enabling model-free variance estimation. This is a key advantage of our approach: we do not

need to specify or estimate outcome regression models to obtain variance estimates.

Based on this cluster-based variance estimation, our general estimator for VE is:

V̂E =
1

n2
T

(∑
t∈T

s2t +
∑
j∈C

(wj)
2s2j

)
. (8)

1Overlap does not affect the asymptotic theory, since the contribution of each j is accounted for via its total
weight wj =

∑
t∈T wjt.
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We show it is consistent with the theorem below.

Theorem 4.1 (Consistency of the General Variance Estimator). Under Assumptions 3, 4, and 5,

the estimator in Equation (8) satisfies

nT

∣∣∣V̂E − VE

∣∣∣ p−→ 0 as nT → ∞.

Proof: see Appendix B

The key intuition is the “power of averaging”: each individual cluster variance estimates are

noisy, but the aggregation across many clusters smooths out individual noises, in the same spirit as

White’s heteroskedasticity-consistent estimator (White, 1980).

4.1.2 Estimator 2: Pooled-variance Form with Covariance Adjustment

We next present an alternative estimator that highlights the structure of VE. It combines a pooled-

variance component, motivated by the homoskedastic benchmark, with an adjustment term that

corrects for heterogeneity via a covariance form. Specifically, we define

V̂ alt
E =

(
S2 − 1∑

t∈T |Ct|/nT

Covv
(
|Ct|, σ2

t

))( 1

nT

+
1

ESS(C)

)
+

1

nT

Covp
(
wj, s

2
j

)
,

(9)

where S2 is the pooled variance in Equation (13), Covv denotes covariance under the uniform

distribution on treated units, and Covp denotes covariance under the normalized weights pj = wj/nT

on controls (a random measure).

This formulation makes clear that V̂ alt
E consists of a t-test–like variance component plus a het-

eroskedasticity correction. We now explain how it arises.

Motivation from the homoskedastic benchmark. If σ2(x) ≡ σ2, then

VE =
1

n2
T

(∑
t∈T

σ2 +
∑
j∈C

(wj)
2 σ2

)

= σ2

(
1

nT

+
1

ESS(C)

)
,

(10)
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where ESS(C) is the effective sample size of the weighted control sample:

ESS(C) =
(
∑

j∈C wj)
2∑

j∈C w
2
j

. (11)

This metric quantifies the number of independent observations that would provide equivalent pre-

cision under equal weighting (Potthoff et al., 2024), and reflects efficiency loss from reusing controls

with varying weights.

This motivates the plug-in form:

V̂ homo
E = S2

(
1

nT

+
1

ESS(C)

)
, (12)

where S2 is a pooled variance estimator for σ2 defined across matched clusters where each treated

unit is matched to more than one control (excluding singleton control matches). Specifically:

S2 =
1

NC

∑
t∈T+

|Ct|s2t with NC =
∑
t∈T+

|Ct|, (13)

where T+ = {t ∈ T : |Ct| > 1} excludes singleton clusters, since variance cannot be estimated from

clusters with only one control unit.

Lemma 4.2 shows that S2 is consistent for the average treated variance up to a correction term

that depends on the covariance between cluster size |Ct| and σ2
t .

Lemma 4.2 (Consistency of the Pooled Variance Estimator). Let {Ct, t ∈ T } be a collection of

matched control sets. Under Assumptions 3, 4, and 5, as nT → ∞:∣∣∣∣∣S2 − 1∑
t∈T |Ct|/nT

Covv
(
|Ct|, σ2

t

)
− 1

nT

∑
t∈T

σ2
t

∣∣∣∣∣ a.s.−−→ 0. (14)

where v denotes the uniform distribution on the treated set T .

Proof: See Appendix C.

This lemma shows that our pooled variance estimator S2, although originally motivated under

homoskedasticity, remains consistent on average even when error variances σ2
t are heterogeneous, up

to a correction term. The key intuition is the “power of averaging”: each local variance estimate s2t
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converges to its target σ2
t within shrinking clusters, and aggregation across many clusters smooths

out local noise, in the same spirit as White’s heteroskedasticity-consistent estimator (White, 1980).

The correction term 1∑
t∈T |Ct|/nT

Covv (|Ct|, σ2
t ) arises because in S2, we weight each residual s2j by

|Ct|
NC

. This term disappears when |Ct| is the same for all t (for example, in fixed M -NN matching) or

under homoskedasticity where σ2
t is constant. When this correction term is non-zero, it is positive

when treated units with larger variance σ2
t tend to have larger clusters |Ct| (e.g., in radius/caliper

schemes where noisier cases attract larger neighborhoods). The term is negative in the opposite

pattern.

Beyond homoskedasticity. Lemma 4.2 leads us to consider the properties of the following

quantity:

V ∗
E,lim :=

(
1

nT

∑
t∈T

σ2
t

)(
1

nT

+
1

ESS(C)

)
.

It turns out that V ∗
E,lim converges in probability to the true variance VE up to a correction term:

Lemma 4.3 (Asymptotic Equivalence to Error Variance). Under the same assumptions as Lemma 4.2,

nT

∣∣∣∣V ∗
E,lim +

1

nT

Covp
(
wj, σ

2
j

)
− VE

∣∣∣∣ p−→ 0

where Covp
(
wj, σ

2
j

)
= 1

nT

∑
j∈C

(
wj −

∑
j′∈C w2

j′

nT

)
wjσ

2
j , and p is the random probability measure

on C that assigns mass pj = wj/nT to each control unit j.

Proof: See Appendix D.

This lemma shows that our variance formula (Equation 12) resembles the pooled variance struc-

ture in a two-sample t-test assuming equal variances, up to an adjustment term, 1
nT

Covp
(
wj, σ

2
j

)
.

The adjustment term appears because V ∗
E,lim depends only on the treated unit variances, while

the true variance VE includes the weighted average of control unit variances through the term

1
n2
T

∑
j∈C w

2
jσ

2
j . The correction term bridges this difference.

The adjustment term is zero when either of two conditions holds: (1) When weights are uniform

(as in M -NN matching with no overlapping controls), each control unit j receives weight wj = 1/M

if matched to exactly one treated unit, and the correction term vanishes. (2) When errors are
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homogeneous (σ2
j = σ2 for all j), the correction term equals zero. When neither condition holds,

the term is positive if higher-variance controls receive more reuse (i.e., Covp (w, σ
2) > 0), and is

negative if more stable controls receive more reuse (Covp (w, σ
2) < 0).

Putting it together. We now establish consistency.

Theorem 4.4 (Consistency of the Alternative Estimator). Under Assumptions 3, 4, and 5, the

alternative estimator in Equation (9) is consistent for VE:

nT

∣∣V̂ alt
E − VE

∣∣ p−→ 0 as nT → ∞.

Proof: See Appendix E.

Together, Theorems 4.1 and 4.4 show that both V̂E and V̂ alt
E are consistent, and in fact asymp-

totically equivalent. The first estimator is the natural direct plug-in; the second highlights the

structure of VE as a t-test–like pooled variance plus a covariance adjustment for heteroskedasticity.

4.2 Consistent Estimation of V

Building on our analysis of the measurement error variance component VE, we now develop a

consistent estimator for the total variance V . While VE captures the variance due to residual

outcome noise, the complete variance V must also account for treatment effect heterogeneity among

the treated units.

We start by exploring the relationship between the squared deviations of individual treatment

effects and the components of the total variance:

E

[(
Yt(1)− Ŷt(0)− τ

)2]
≈E

[
(τ(x)− τ)2

]
+ E

[
ε2t +

∑
j∈Ct

w2
jtε

2
j

]

≈nTVP +
1

nT

[∑
t∈T

σ2
t +

∑
j∈C

(∑
t′∈T

w2
jt′

)
σ2
j

]
.

This expectation can be approximated empirically as:
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E

[(
Yt(1)− Ŷt(0)− τ

)2]
≈ 1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
.

By comparing the population expression above with the definition of VP in Equation (6), and

replacing population variances by sample analogues, we obtain the following estimator:

V̂P :=
1

n2
T

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
− 1

n2
T

[∑
t∈T

σ̂2
t +

∑
j∈C

(∑
t′∈T

w2
jt′

)
σ̂2
j

]

We now heuristically combine the two components. While this expression includes variance

estimates σ̂2
t and σ̂2

j , the former terms will cancel out and the latter will ultimately be approximated

by S2 as in our estimator for VE. One does not need to worry about the precise form of these terms

at this stage—they serve to motivate the algebraic derivation below.

Combining this with our estimator for VE, we obtain:

V̂ =nT · (V̂E + V̂P )

=
1

nT

∑
t∈T

σ̂2
t +

∑
j∈C

(∑
t′∈T

wjt′

)2

σ̂2
j


+

1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
− 1

nT

[∑
t∈T

σ̂2
t +

∑
j∈C

(∑
t′∈T

w2
jt′

)
σ̂2
j

]

Through algebraic simplification, this expression reduces to:

V̂ =
1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
+

1

nT

∑
j∈C

s2j

(∑
t′∈T

wjt′

)2

−

(∑
t′∈T

w2
jt′

) (15)

This estimator effectively combines the empirical squared deviations with a correction term that

accounts for the matching structure.

Theorem 4.5 (Consistency of the Total Variance Estimator). Under Assumptions 3, 4, and 5, the
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proposed estimator V̂ is consistent:

∣∣∣V̂ − V
∣∣∣ p−→ 0 as nT → ∞.

Proof: See Appendix F

4.3 Comparison with Abadie and Imbens (2006) Estimator

To position our work within the existing literature and highlight its advantages, we now compare

our variance estimator with that proposed by Abadie and Imbens (2006). This comparison is

particularly relevant as their work established the foundational theory for matching estimators, and

our analysis builds upon and extends their approach for practical applications in modern causal

inference settings.

Adapting their estimator to our notation:

V̂AI06 =
1

n2
T

∑
t∈T

σ̂2
t +

1

n2
T

∑
j∈C

(∑
t∈T

wjt

)2

σ̂2
j , (16)

where wjt = 1/M if unit j is among the M closest controls to unit t, and wjt = 0 otherwise, and σ̂2
i

is an estimate of the conditional outcome variance for unit i, defined as:

σ̂2
i =

M

M + 1

(
Yi −

1

M

M∑
m=1

Ym(i)

)2

.

Here, Ym(i) denotes the outcome of the m-th closest unit to unit i among units with the same

treatment status, and M is a fixed small number (typically set to match the number of matches

used in the estimator).

The fundamental methodological difference lies in variance estimation approaches. Abadie and

Imbens (2006) estimates variance by comparing each unit to its nearest same-treatment neighbors

individually: σ̂2
i = M

M+1

(
Yi − 1

M

∑M
m=1 Ym(i)

)2
. In contrast, our estimator calculates variance within

matched clusters: s2t = 1
|Ct|−1

∑
j∈Ct

(
Yj − Ȳt

)2
, pooling information across all controls matched to

each treated unit.
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This difference in approach leads to several important practical advantages and trade-offs. First,

our estimator requires only matching controls to treated units, whereas Abadie and Imbens (2006)

requires matching for both treatment and control groups—significantly reducing computational

burden when the control group is large. However, this computational advantage comes at the cost

of requiring our homoskedasticity assumption (σ2
t = σ2

c for matched pairs), while Abadie and Imbens

(2006) can accommodate arbitrary heteroskedasticity across units.

Second, Abadie and Imbens (2006)’s approach necessitates matching treated units with other

treated units to estimate σ̂2
t . This becomes problematic when the treated group is small or highly

heterogeneous in covariates, as finding good same-treatment matches becomes difficult or impossi-

ble. Our approach avoids this issue entirely by focusing on control-to-treated matching, making it

particularly suitable for ATT estimation where treated samples are typically small.

Third, our framework naturally accommodates flexible weighting schemes, including kernel

weights, caliper matching weights, and optimal transportation weights, whereas Abadie and Im-

bens (2006)’s approach was primarily designed for fixed-number nearest neighbor matching with

equal weights.

The main limitation of our approach is that we do not utilize within-treated-group variation for

variance estimation—we do not use the observed outcomes Yt of treated units when estimating σ2,

potentially discarding valuable information. This efficiency loss is the price of our computational

simplicity and homoskedasticity assumption. However, this limitation is typically minor in ATT

applications where the treated group is small relative to the control group, and within-treated-group

variation becomes unreliable when the number of treated units is small. Many influential ATT

applications feature relatively small treated samples, including job training program evaluations

(LaLonde, 1986), educational interventions (Abadie et al., 2002), and health policy assessments

(Keele et al., 2023), where Imbens (2004) notes that ATT estimation is often preferred precisely

because treatment is relatively rare or targeted.

5 Simulation

In this section, we conduct simulation studies to validate the two main theoretical results established

in earlier sections: Theorem 3.2 (Central Limit Theorem) and the consistency of our variance

22



estimator. The primary focus is threefold: first, to verify the asymptotic normality of our estimator,

second, to assess whether confidence intervals constructed using our variance estimator achieve

near-nominal coverage, and third, to compare the performance of our variance estimator to that of

existing methods, demonstrating how our approach substantially outperforms the state-of-the-art

bootstrap variance estimator proposed by Otsu and Rai (2017). These simulations provide empirical

insights into the reliability and robustness of our methods under different data-generating scenarios

and matching conditions.

5.1 Otsu–Rai DGP: Challenging Nonlinear Setting

We begin with the simulation design of Otsu and Rai (2017), which features nonlinear response

surfaces known to be challenging for bootstrap inference. We fix the treatment effect at τ = 0, set

(γ1, γ2) = (0.15, 0.7) for the propensity score, and vary the covariate dimension K ∈ {2, 4, 8}. The

error term is drawn as ϵi ∼ N(0, 0.22). Outcome functions m(·) are taken from the six nonlinear

curves reported in Otsu and Rai (2017) and reproduced in Table 1.

Formally, the data generating process is:

{Yi, Zi,Xi}ni=1,

Yi(1) = τ +m(∥Xi∥) + ϵi, Yi(0) = m(∥Xi∥) + ϵi,

Zi = I{P (Xi) ≥ vi}, vi ∼ U [0, 1],

P (Xi) = γ1 + γ2∥Xi∥, Xi = (X1i, . . . , XKi)
′,

Xji = ξi|ζji|/∥ζi∥, j = 1, . . . , K,

ξi ∼ U [0, 1], ζi ∼ N(0, IK).

We implement 5-nearest neighbor matching with uniform weighting (wjt = 1/5) across 500

replications. The sample sizes nT and nC are determined by the propensity score design, resulting

in approximately balanced treatment and control groups with a 1:1 ratio. We also vary the total

sample size n from 250 to 5000.

Figure 1 presents our main empirical findings. It shows a substantial performance gap between

inference methods: our pooled variance estimator consistently achieves coverage rates much closer
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Table 1: Nonlinear outcome functions m(z) used in simulations
Curves m(z)
1 0.15 + 0.7z
2 0.1 + z/2 + exp (−200(z − 0.7)2) /2
3 0.8− 2(z − 0.9)2 − 5(z − 0.7)3 − 10(z − 0.6)10

4 0.2 +
√
1− z − 0.6(0.9− z)2

5 0.2 +
√
1− z − 0.6(0.9− z)2 − 0.1z cos(30z)

6 0.4 + 0.25 sin(8z − 5) + 0.4 exp (−16(4z − 2.5)2)

to the nominal 95% level compared to the wild bootstrap method proposed by Otsu and Rai (2017).

Across all covariate dimensions, our method maintains coverage rates between 93.8% and 99.0%,

with an overall average of 96.7%, while the bootstrap method exhibits severe undercoverage ranging

from 74.6% to 96.8%, averaging only 81.7%.

The performance differential becomes more obvious as sample size increases and covariate di-

mensionality decreases. Most notably, at the largest sample size (n = 5000) with low-dimensional

covariates (K = 2), the bootstrap method achieves only 75.2% coverage across all six nonlinear

curves. In contrast, our method maintains 96.3% coverage at this sample size, demonstrating ro-

bustness even in challenging settings.

The superior coverage performance of our method comes with appropriately wider confidence

intervals. Our method produces confidence intervals with an average width of 0.092 compared to

0.057 for the bootstrap method. On average, the confidence interval length under our method is

about 1.64 times larger than that under the bootstrap method across all sample sizes, covariate

dimensions, and curve IDs. The bootstrap method’s narrower intervals are artificially optimistic

due to its failure to account for the true sampling variability induced by control unit dependencies.

Detailed figures of confidence interval length can be found at Figure 3 in the Appendix.

One limitation of our estimator is the tendency toward slight overcoverage, particularly evident

in high-dimensional settings where coverage rates occasionally reach 100%. This conservative be-

havior can be attributed to the fact that confidence interval lengths remain relatively stable across

dimensions (averaging 0.092–0.093), while the underlying sampling variability may decrease in some

settings. The challenging nature of the Otsu-Rai data generating process, where complex nonlinear

outcome functions create additional estimation complexity, contributes to this conservative perfor-

mance. We leave the investigation of refined interval calibration in high-dimensional settings as an
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important direction for future research.

Figure 1: Simulation results for the Otsu-Rai data generating process across varying covariate di-
mensions (K = 2, 4, 8), sample sizes (n = 250, 500, 1000, 5000), and nonlinear outcome functions
(curves 1–6). Coverage percentages for asymptotic inference (our method) versus bootstrap infer-
ence. Pink opacity indicates deviation from the nominal 95% rate. Our pooled variance estimator
maintains coverage close to the nominal rate while the bootstrap method exhibits severe undercov-
erage, particularly at large sample sizes and low dimensions.

5.2 Che et al. DGP: Multi-Dimensional Validation

To provide comprehensive validation of our theoretical framework, we conduct additional simula-

tions following the design from Che et al. (2024). This four-dimensional setting with varying degrees

of population overlap provides secondary evidence of our method’s robustness across different sce-

narios.

We maintain a 1:5 control–treated ratio and vary the total sample size across n ∈ {120, 240, 600,

1200, 2400}, corresponding to treated sample sizes of nT ∈ {20, 40, 100, 200, 400} respectively. Co-
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variates are drawn from a 4-dimensional multivariate normal distribution N((0.5, 0.5, 0.5, 0.5)T ,Σ),

where the covariance matrix Σ has diagonal elements Σii = 1 for all i and off-diagonal elements

Σij = 0.8 for i ̸= j. For each unit with covariates (x1, x2, x3, x4), we generate outcomes via

Y = f0(x1, x2, x3, x4) + Z · τ(x1, x2, x3, x4) + ϵ, where f0 is the density function for the same mul-

tivariate normal distribution and τ(x1, x2, x3, x4) = 3
∑4

i=1 xi is the heterogeneous treatment effect

function. We vary the degree of overlap by adjusting the distribution parameters and use 5-nearest

neighbor matching with uniform weighting (wjt = 1/5) across 500 replications.

We consider two error variance structures to test the robustness of our method:

Homoskedastic: ϵi ∼ N (0, 0.52) (17)

Covariate-dependent: ϵi ∼ N (0, σ2(Xi)) where σ2(Xi) = 0.25 + 0.5 · ∥Xi − X̄∥ (18)

Figure 2 shows that while the performance gap between methods is smaller than in the Otsu-Rai

setting, our pooled variance estimator consistently outperforms the bootstrap method across both

variance structures. In the homoskedastic case, our method achieves coverage rates very close to the

nominal 95% level, while the bootstrap method consistently falls below 95%, showing systematic

undercoverage across all overlap scenarios.

The difference in performance is clearer in the covariate-dependent variance setting. While our

method generally maintains coverage close to 95%, the bootstrap method performs reasonably well

in most scenarios but fails dramatically when the degree of overlap is very high. This shows the

bootstrap’s inability to properly account for the complex dependency structure that emerges when

high-quality control units are extensively reused across multiple treated units, particularly when

variance heterogeneity compounds the estimation challenges.

The confidence interval analysis shows that our method consistently produces wider intervals

than the bootstrap, with the difference being more pronounced in the covariate-dependent variance

setting. On average, the CI length under our method is about 1.06 times larger than the bootstrap

CI length. Our method produces appropriately conservative intervals while the bootstrap method’s

narrower intervals are artificially optimistic because it fails to account for the true sampling vari-

ability induced by overlapped controls and variance heterogeneity. Detailed figures of confidence

interval length can be found at Figure 3 in the Appendix.
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Figure 2: Simulation results for the Che et al. data generating process across varying degrees of
population overlap and two error variance structures. Coverage percentages comparing our pooled
variance estimator (asymptotic inference) with the wild bootstrap method across different overlap
scenarios and variance structures. Results show our method maintains coverage closer to the nominal
95% rate, particularly in challenging covariate-dependent variance settings with high overlap.
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5.3 Summary of Simulation Evidence

The simulation evidence provides strong support for our theoretical framework and demonstrates

the practical importance of our contributions. In challenging settings with substantial control unit

reuse—a common occurrence in real-world matching applications—our method maintains proper

coverage while the current state-of-the-art bootstrap approach can fail dramatically. The robustness

of our approach across different data generating processes, dimensions, and overlap patterns makes it

a reliable tool for practitioners seeking valid population inference in matching-based causal studies.

Additional results examining the performance of individual variance components and bias cor-

rection effects are presented in Appendix J.2.

6 Application: Education Program Evaluation in Brazil

To illustrate the practical importance of our variance estimation framework, we analyze data from

Brazil’s “Jovem de Futuro” (Young of the Future) education program, following the experimental

design of Barros et al. (2012) and Ferman (2021). This application demonstrates how our robust

inference methods affect substantive conclusions in a setting with extensive control unit reuse—

precisely the scenario where existing methods can fail.

6.1 Data and Matching Design

The Jovem de Futuro program offered management strategies and conditional grants to schools in

Rio de Janeiro and São Paulo from 2010-2012. Following Ferman (2021)’s approach, we employ a

within-study comparison design where experimental control schools (those randomized to receive

no intervention) serve as our “treatment” group. We match these nT = 54 experimental control

schools to nC = 4,447 non-participating schools to estimate what should be a null effect if matching

successfully removes selection bias.

Pre-treatment covariates consist of standardized test scores from 2007-2009 and a state indicator.

Table 2 shows substantial pre-treatment differences between experimental and non-participating

schools, with experimental schools having consistently lower baseline scores across all years, moti-

vating the use of matching methods.
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Table 2: Summary Statistics for Brazilian School Data

Non-participating Experimental Standardized
Variable Schools (Control) Schools (Treated) Difference
Score 2007 0.047 −0.028 −0.075
Score 2008 0.008 −0.010 −0.018
Score 2009 0.023 −0.025 −0.048
São Paulo (%) 78.1 72.2 −5.9
Sample size 4,447 54

Note: Test scores are standardized with mean 0 and standard deviation 1
in the full sample. São Paulo percentage indicates the proportion of schools
from São Paulo state.

We implement radius matching following Che et al. (2024), using the L∞ distance metric with

a distance caliper of c = 0.35. We impose covariate-specific calipers of 0.2 standard deviations for

each pre-treatment test score (2007-2009) and require near-exact matching on state with a caliper of

0.001. This configuration ensures high-quality matches while maintaining adequate sample size—49

of 54 treated units (91%) find at least one match within the specified radius, with the remaining 5

units matched adaptively to their nearest neighbor. For matched units, we apply synthetic control

weights to minimize covariate imbalance within each matched set. The matching procedure achieves

excellent covariate balance, with post-matching standardized differences below 0.1 for all covariates.

6.2 Control Unit Reuse and Effective Sample Size

A key feature of this application is the minimal reuse of control schools in our matched sample.

Table 3 presents diagnostics that characterize the dependency structure created by matching. The

mean control reuse of 1.02 indicates that control schools are rarely matched to multiple treated

units—on average, each control school is matched to just one treated unit, with only a small

fraction matched to two treated units.

This minimal control reuse arises from the combination of a small treated sample (nT = 54)

relative to the large control reservoir (nC = 4,447), along with our radius matching design that

allows variable numbers of matches per treated unit. The maximum reuse of only 2 indicates that

even the best control schools are matched to at most two treated units.

Despite the limited control reuse, the effective sample size (ESS) of 95 is notably lower than

the 155 unique controls used, with an ESS ratio of 61.3%. This reduction in effective sample size
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Table 3: Control Unit Reuse and Effective Sample Size in the
Matched Sample

Statistic Value
Mean control reuse 1.02
Median control reuse 1
Maximum control reuse 2
Proportion of controls matched to multiple treated units 1.9%
Effective sample size (ESS) 95
Number of unique controls 155
ESS/Number of unique controls 61.3%

Note: Mean control reuse measures the average number of times each
control unit is matched to treated units. A value of 1 indicates no
reuse; higher values indicate greater dependency in the matched sam-
ple. The effective sample size accounts for both control reuse and the
heterogeneous weights from synthetic control optimization.

is primarily driven by the synthetic control weighting scheme rather than control reuse per se.

The synthetic control optimization assigns heterogeneous weights to minimize covariate imbalance

within each matched set, with some controls receiving substantially higher weights than others.

This unequal weighting, while improving covariate balance, reduces the effective independent in-

formation in the sample. Our variance estimator properly accounts for this reduction through the

ESS calculation, ensuring valid inference despite the loss of effective sample size from the weighting

scheme.

6.3 Treatment Effect Estimates and Inference

Table 4 presents estimates of the average treatment effect on the treated using different inference

methods. The point estimate of 0.035 is close to zero, as expected in this within-study comparison.

This null effect is by design: we are comparing experimental control schools (randomized to re-

ceive no treatment) to observationally similar non-participating schools. If our matching procedure

successfully removes selection bias, we should find no systematic difference between these groups,

validating the matching method’s ability to create appropriate counterfactuals.

Both inference methods produce similar standard errors (0.030 vs 0.029), with 95% confidence

intervals that include zero. This similarity is expected given the minimal control reuse in our

matched sample (mean reuse of 1.02). With limited dependency structure, the wild bootstrap
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Table 4: ATT Estimates and Variance Components for 2010 Test Scores

Method Point Estimate SE 95% CI nT V̂E nT V̂P

Our pooled variance estimator 0.035 0.030 (−0.024, 0.094) 0.055 −0.400
Wild bootstrap (Otsu-Rai) 0.035 0.029 (−0.022, 0.092) 0.045 –

Note: Both methods use radius matching with synthetic control weights. The variance compo-
nents show nT V̂E (sampling variance due to residual noise) and nT V̂P (variance due to treatment
effect heterogeneity). Wild bootstrap based on 1,000 replications.

performs adequately, and both methods lead to the same substantive conclusion: we cannot reject

the null hypothesis of no selection bias after matching.

An important feature of our variance estimator is the decomposition into measurement error

variance (V̂E) and population heterogeneity variance (V̂P ). The scaled variance components show

nT V̂E = 0.055, indicating modest sampling variability due to residual outcome noise. The estimate

nT V̂P = −0.400 is negative, which occurs because we obtain nT V̂P through subtraction: we subtract

nT V̂E in Equation (9) from V̂ in Equation (15). While theoretically this decomposition is accurate

in probability limit, in finite samples it is possible for V̂ < nT V̂E due to sampling variability of both

estimators. The negative value suggests minimal treatment effect heterogeneity in this sample.

Developing improved estimators for nT V̂P that ensure non-negativity while maintaining consistency

remains an interesting direction for future work.

7 Conclusion

We have presented a new framework for inference with matching estimators that strengthens both

theoretical and practical foundations. Our analysis establishes a central limit theorem for a broad

class of matching procedures under heteroskedastic errors, extends variance decompositions to in-

clude a previously unrecognized covariance term, and introduces a variance estimator that is com-

putationally simple and consistent.

Simulations demonstrate that these refinements have substantial practical value. While the

wild bootstrap of Otsu and Rai (2017) often undercovers, our estimator consistently delivers con-

fidence intervals with coverage close to the nominal rate, even in moderately sized samples. The

improvements are not subtle: coverage gaps can reach 20 percentage points, underscoring how

minor-seeming theoretical adjustments can yield dramatic empirical benefits.
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Methodologically, our work parallels the role of heteroskedasticity-robust variance estimation

in regression: it provides a theoretically justified and broadly applicable correction that improves

inference reliability. Practically, our results equip applied researchers with a variance estimator that

is easy to compute, requires only treated-to-control matching, and produces trustworthy confidence

intervals in settings where existing approaches falter.

We view these contributions as refinements to a well-studied problem rather than a wholesale

rethinking of matching inference. Yet the payoff of these refinements is large: by carefully addressing

overlooked variance components and grounding inference in rigorous asymptotics, we achieve both

theoretical clarity and dramatic gains in empirical performance. Future work may extend these

tools to weighting methods and other causal estimators, further unifying the inferential foundations

of design-based approaches in causal inference.
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Appendix

A Proof of Theorem 3.2

We prove that √
nT (τ̂ −Bn − τ)√

VE + VP

d−→ N(0, 1).

Step 1: Decomposition. Recall the decomposition

τ̂ − τ = Pn + En +Bn,

where

Pn =
1

nT

∑
t∈T

{τ(Xt)− τ},

En =
1

nT

∑
t∈T

ϵt −
1

nT

∑
j∈C

wjϵj.

The bias term Bn is handled separately. The main task is to establish a joint CLT for (Pn, En).

Step 2: Martingale representation. Let Fi = σ{(Zℓ, Xℓ, Yℓ) : ℓ ≤ i}. Define

M (P )
n =

1

π

n∑
i=1

Zi(τ(Xi)− τ),

M (E)
n =

1

π

n∑
i=1

{Ziϵi − (1− Zi)wiϵi},

where wi is the total weight assigned to control i across all matches (and equals 1 if i is treated).

Then M (P ) and M (E) are martingales with respect to {Fi}.

For M (P ), note that

E[M (P )
n |Fn−1] = M

(P )
n−1 +

1
π
E[Zn(τ(Xn)− τ) | Fn−1] = M

(P )
n−1,

since E[Zn|Xn] = π and E[τ(Xn)− τ ] = 0. For M (E), a similar calculation using E[ϵn|Xn, Zn] = 0
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yields

E[M (E)
n |Fn−1] = M

(E)
n−1.

Thus both are martingales. Moreover,

Pn =
π

nT

M (P )
n , En =

π

nT

M (E)
n .

Step 3: Martingale CLT setup. Define the martingale difference array

Xn,k =
1√
n

∆M
(P )
k

∆M
(E)
k

 , ∆M
(P )
k = 1

π
Zk(τ(Xk)− τ), ∆M

(E)
k = 1

π
(Zk − (1− Zk)wk)ϵk.

Then Sn =
∑n

k=1Xn,k = (M
(P )
n ,M

(E)
n )⊤/

√
n.

Step 4: Quadratic variations. The conditional variance for ∆M
(P )
k is

E[(∆M
(P )
k )2|Fk−1] =

1

π2
E[Zk(τ(Xk)− τ)2 | Fk−1]

=
1

π
V ar(τ(X) | Z = 1) =: nTVP

π
.

Hence
n∑

k=1

E[(∆M
(P )
k )2|Fk−1] = n · nTVP

π
.

For ∆M
(E)
k ,

E[(∆M
(E)
k )2|Fk−1] =

1

π2
E[(Zk + (1− Zk)w

2
k)σ

2
k,Zk

(Xk) | Fk−1],

where σ2
k,z(Xk) = E[ϵ2k|Xk, Zk = z]. Taking expectations,

E[n2
TVE] = π2E

[
n∑

k=1

E[(∆M
(E)
k )2|Fk−1]

]
.

37



Proposition A.1. We have

1

n

[
n∑

k=1

E
[
(∆M

(E)
k )2 | Fk−1

]
− 1

π2
E[n2

TVE]

]
p−→ 0.

Proof. Note that the summands E[(∆M
(E)
k )2|Fk−1] are uniformly integrable and bounded in expec-

tation by Assumption 4 and finite moments of the weights. By the predictable law of large numbers

for martingales (Hall and Heyde, 2014, Theorem 2.18), the empirical averages converge to their

expectations, yielding the result.

Cross terms vanish: E[∆M
(P )
k ∆M

(E)
k |Fk−1] = 0, so the martingales are orthogonal.

Step 5: Lindeberg condition. For M (P ), bounded or sub-Gaussian treatment effects imply

|∆M
(P )
k | is uniformly bounded, so the Lindeberg condition holds trivially.

For M (E), we must show

1

n

n∑
k=1

E
[
(∆M

(E)
k )2 1{|∆M

(E)
k | > ε

√
n} | Fk−1

]
p−→ 0.

Fix p = 2+δ
2

> 1. For any integrable Y and t > 0,

E[Y 21{|Y | > t} | Fk−1] ≤
(
E[|Y |2+δ | Fk−1]

)2/(2+δ)(
E[Y 2 | Fk−1]

)δ/(2+δ)

t2δ/(2+δ)
.

Apply this to Y = ∆M
(E)
k and t = ε

√
n. By Assumption 4, supx E[|ϵ|2+δ|X = x, Z = z] < ∞ and

σ2
z(x) is bounded. Finite moments of wk then imply

E[(∆M
(E)
k )2+δ | Fk−1] ≤ C, E[(∆M

(E)
k )2 | Fk−1] ≤ C,

for some constant C independent of n, k. Thus

E[(∆M
(E)
k )21{|∆M

(E)
k | > ε

√
n} | Fk−1] ≤ C ′n−δ/(2+δ),
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and summing over k gives

1

n

n∑
k=1

E[(∆M
(E)
k )21{|∆M

(E)
k | > ε

√
n} | Fk−1] ≤ C ′n−δ/(2+δ) → 0.

Hence the Lindeberg condition holds.

Step 6: Limit distribution. By the two-dimensional martingale CLT,

1√
n

M
(P )
n

M
(E)
n

 ⇒ N

0,

nTVP

π
0

0 π−1E[nTVE]

 .

Since Pn = πM
(P )
n /nT and En = πM

(E)
n /nT , with nT/n → π, we obtain

√
nT (Pn + En) ⇒ N(0, VP + VE) .

Therefore √
nT (τ̂ −Bn − τ)√

VE + VP

⇒ N(0, 1).

This establishes Theorem 3.2.

B Proof of Theorem 4.1

Proof. Expand the difference:

nT

(
V̂E − VE

)
=

1

nT

∑
t∈T

(s2t − σ2
t ) +

1

nT

∑
j∈C

w2
j (s

2
j − σ2

j ).

The first term has exactly the same form as Term A in the proof of Lemma 4.2, except scaled

by 1/nT . Using the same decomposition (sampling error, cross-product, interaction, and systematic

differences, cf. Equations (20)–(20e)), and applying the same moment bounds and shrinking–cluster

arguments, we obtain
1

nT

∑
t∈T

(s2t − σ2
t )

p−→ 0.

For the second term, note that w2
j ≤ K(j)2 where K(j) is the reuse count of control j. By
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Lemma C.2, K(j) has all finite moments under the exponential tail condition, and hence E[w2
j ] < ∞.

The same argument as above (treating s2j−σ2
j as an error term with bounded moments, independent

across controls given covariates) shows

1

nT

∑
j∈C

w2
j (s

2
j − σ2

j )
p−→ 0.

Combining both parts yields the stated result.

C Proof of Lemma 4.2

Proof. Let us decompose the difference between our variance estimator and the true average vari-

ance:

S2 − 1

nT

∑
t∈T

σ2
t =

1

NC

∑
t∈T

|Ct|s2t −
1

nT

∑
t∈T

σ2
t

=
∑
t∈T

uts
2
t −

1

nT

∑
t∈T

σ2
t

=
∑
t∈T

(uts
2
t −

1

nT

σ2
t )

=
∑
t∈T

(uts
2
t − utσ

2
t )︸ ︷︷ ︸

Term A

+
∑
t∈T

(utσ
2
t −

1

nT

σ2
t )︸ ︷︷ ︸

Term B

where ut =
|Ct|
NC

represents the weight of cluster t in the pooled estimator. Note that

NC =
∑
t∈T

|Ct| (19)

is the total number of matches2.

The lemma holds if two conditions are established:

1. Term A vanishes:
∑

t∈T (uts
2
t − utσ

2
t ) → 0 in probability as nT → ∞;

2If a control unit is matched to multiple treated units, it contributes to NC multiple times. For example, if a
control unit is matched to three treated units, it adds 3 to NC rather than 1.
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2. Term B equals the covariance adjustment:

∑
t∈T

(
utσ

2
t − 1

nT
σ2
t

)
=

1∑
t∈T |Ct|/nT

Covv
(
|Ct|, σ2

t

)
.

Subtracting Term B from both sides then yields exactly the form in Equation (14). We handle

Term A in Section C.1 and Term B in Section C.2.

C.1 Proof that Term A goes to zero

We first analyze Term A, which measures the difference between the estimated and true variance

within each cluster. For a fixed treatment t, for each individual matched control j in Ct, we focus

on the summand in s2t =
1

|Ct|−1

∑
j∈Ct(Yj − Ȳt)

2 (introduced in Equation 7) and expand the squared

deviation:

(Yj − Ȳt)
2 =

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk) + ϵj −
1

|Ct|
∑
k∈Ct

ϵk

)2

=

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)2

+ 2

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)(
ϵj −

1

|Ct|
∑
k∈Ct

ϵk

)

+

(
ϵj −

1

|Ct|
∑
k∈Ct

ϵk

)2
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Therefore, the difference between the sample variance and the true variance can be written as:

s2t − σ2
t =

1

|Ct| − 1

∑
j∈Ct

(Yj − Ȳt)
2 − σ2

t

=

(
1

|Ct|
∑
j∈Ct

ϵ2j − σ2
t

)
︸ ︷︷ ︸

Sampling error

+
1

|Ct| − 1

∑
j∈Ct

−2ϵj

 1

|Ct|
∑
k∈Ct
k ̸=j

ϵk




︸ ︷︷ ︸
Cross-product of errors

+
1

|Ct| − 1

∑
j∈Ct

[
2

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)(
ϵj −

1

|Ct|
∑
k∈Ct

ϵk

)]
︸ ︷︷ ︸

Interaction between function and errors

+
1

|Ct| − 1

∑
j∈Ct

(f0(Xj)−
1

|Ct|
∑
k∈Ct

f0(Xk)

)2


︸ ︷︷ ︸
Systematic differences within cluster
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Now, Term A becomes the following decomposition:

Term A =
∑
t∈T

(uts
2
t − utσ

2
t ) (20a)

=
∑
t∈T

ut

|Ct|
∑
j∈Ct

(ε2j − σ2
t )︸ ︷︷ ︸

Sampling error

(20b)

+
∑
t∈T

ut

|Ct|
∑
j∈Ct

−2εj

 1

|Ct|
∑
k∈Ct
k ̸=j

εk




︸ ︷︷ ︸
Cross-product of errors

(20c)

+
∑
t∈T

ut

|Ct| − 1

∑
j∈Ct

[
−2
(
f0(Xj)− f 0,t

)(
εj − εt

)]
︸ ︷︷ ︸

Interaction between function and errors

(20d)

+
∑
t∈T

ut

|Ct| − 1

∑
j∈Ct

[(
f0(Xj)− f 0,t

)2]
︸ ︷︷ ︸

Systematic differences within cluster

(20e)

Let’s focus on the first component of Term A, the sampling error:

(20b) =
∑
t∈T

ut

|Ct|
∑
j∈Ct

(ε2j − σ2
t )

=
∑
c∈C

∑
t∈Tc

1∑
c∈C K(c)

(ε2c − σ2
t )

=
∑
c∈C

∑
t∈Tc

1∑
c∈C K(c)

(ε2c − σ2
c + σ2

c − σ2
t )

=
1∑

c∈C K(c)

∑
c∈C

K(c)
(
ε2c − σ2

c

)
︸ ︷︷ ︸

first term of first component

(21a)

+
1∑

c∈C K(c)

∑
c∈C

∑
t∈Tc

(
σ2
c − σ2

t

)
︸ ︷︷ ︸

second term of first component

(21b)

where Tc is the set of treated units matched to control unit c. K(c) = |Tc| represents the number

of times control unit c is used across all matches. Note that
∑

c∈C K(c) =
∑

t∈T |Ct| = NC is the

total number of matches (Equation 19).
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C.1.1 First term, 21a goes to zero under a (2 + δ)/2-moment condition.

Write

Sn :=
1∑

c∈C K(c)

∑
c∈C

K(c)
(
ε2c − σ2

c

)
=
∑
c∈C

ac ξc, ac :=
K(c)∑

c′∈C K(c′)
, ξc := ε2c − σ2

c .

We separately discuss cases when q = (2 + δ)/2 ∈ (1, 2] and q > 2 because different techniques

are used.

Case q = (2 + δ)/2 ∈ (1, 2] Conditional on the matching covariates X := {Xi, Zi}ni=1 (hence

on {K(c)}c∈C), the {ξc}c∈C are independent with E[ξc | X ] = 0 and have uniformly bounded q-th

moments by Lemma C.1 below. By the von Bahr–Esseen inequality for 1 ≤ q ≤ 2,

E
[∣∣Sn

∣∣q ∣∣X ] ≤ 2
∑
c∈C

|ac|q E
[
|ξc|q | X

]
≤ 2C

∑
c∈C

aqc = 2C ·
∑

c∈C K(c)q(∑
c∈C K(c)

)q .
Taking expectations and then Markov’s inequality yields, for any ε > 0,

P
(
|Sn| > ε

)
≤ 2C

εq
E

[ ∑
c∈C K(c)q(∑
c∈C K(c)

)q
]
.

Thus, if
1(∑

c∈C K(c)
)q ∑

c∈C

K(c)q
p−→ 0, q = (2 + δ)/2, (22)

we have Sn
p−→ 0 by bounded convergence.

(22) is true: for control reuse counts {K(c)}c∈C, we have E[K(c)q | Z = 0] < ∞ and E[K(c) |

Z = 0] > 0 (see Lemma C.2) Hence, by the law of large numbers

1

nC

∑
c∈C

K(c)
p−→ E[K(c) | Z = 0],

1

nC

∑
c∈C

K(c)q
p−→ E[K(c)q | Z = 0],

so that ∑
c K(c)q(∑
c K(c)

)q =
1
nC

∑
cK(c)q(

1
nC

∑
cK(c)

)q · n 1−q
C

p−→ 0 since q > 1.
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Case q > 2 By Rosenthal’s inequality (for independent mean-zero summands and q ≥ 2), there

exists Cq < ∞ such that

E[|Sn|q | X ] ≤ Cq

{(∑
c

a2c E[ξ2c | X ]
)q/2

+
∑
c

|ac|q E[|ξc|q | X ]

}
.

Using supc E[ξ2c ] ≤ M2 < ∞,

E[|Sn|q | X ] ≤ Cq

{
M

q/2
2

(∑
c

a2c

)q/2
+ Mq

∑
c

aqc

}
.

Since ac = K(c)/
∑

c′ K(c′),

∑
c

a2c =

∑
c K(c)2(∑
cK(c)

)2 , ∑
c

aqc =

∑
cK(c)q(∑
cK(c)

)q .
Hence

E[|Sn|q] ≤ Cq

{
M

q/2
2 E

[( ∑
c K(c)2

(
∑

c K(c))2

)q/2]
+Mq E

[ ∑
c K(c)q

(
∑

c K(c))q

]}
. (23)

Therefore, if ∑
cK(c)2(∑
cK(c)

)2 p−→ 0 and

∑
c K(c)q(∑
cK(c)

)q p−→ 0, (24)

then E[|Sn|q] → 0 and by Markov, Sn
p−→ 0.

Again, (24) is true due to law of large numbers.

Lemma C.1 (Uniform q-moment for ξc for any q ≥ 1). Let q ≥ 1 and suppose

sup
x

E
[
|ε| 2q

∣∣X = x
]
≤ Cε < ∞.

Then

sup
c

E
[
|ε2c − σ2

c | q
]
≤ C < ∞,

for a constant C depending only on q and Cε.
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Proof. Use the inequality valid for all q ≥ 1: |u− v|q ≤ 2q−1
(
|u|q + |v|q

)
with u = ε2c , v = σ2

c :

E
[
|ε2c − σ2

c | q
]
≤ 2q−1

{
E
[
|εc| 2q

]
+ E

[
(σ2

c )
q
] }

.

For the second term, apply conditional Jensen with the convex map x 7→ xq:

(σ2
c )

q =
(
E[ε2c | Xc]

)q ≤ E
[
|εc| 2q | Xc

]
.

Taking expectations and using the uniform bound on the conditional 2q-th moment,

E
[
(σ2

c )
q
]
≤ E

[
E(|εc| 2q | Xc)

]
≤ Cε, and E

[
|εc| 2q

]
≤ Cε.

Thus E[|ε2c − σ2
c | q] ≤ 2q−1(Cε + Cε) = 2qCε, uniformly in c.

Lemma C.2 (Finite Moments of Matching Weights). Let K(i) be the number of times control unit

i is matched to units in the treated group. For controls,

wi =
∑
t∈T

wit ≤ K(i),

since wit ≤ 1 for each pair (i, t). Under the Exponential Tail Condition (Assumption 3), all moments

of K(i) are finite. Consequently, E[wr
i ] < ∞ for all integers r > 0.

Proof. The bound wi ≤ K(i) follows directly from the definition of matching weights, since each

pairwise weight wit ≤ 1. The finiteness of all moments ofK(i) under the Exponential Tail Condition

is established in the proof of Lemma 3 of Abadie and Imbens (2006) (p. 262). Since wi ≤ K(i), we

have wr
i ≤ K(i)r for all r ≥ 1, and therefore E[wr

i ] ≤ E[K(i)r] < ∞.

C.1.2 Second term 21a goes to zero:

1∑
c∈C K(c)

∑
c∈C

∑
t∈Tc

(σ2
c − σ2

t ) =
1∑

c∈C K(c)

∑
c∈C

K(c)(σ2
c − σ̄2

c ) (25)

where σ̄2
c = 1

K(c)

∑
t∈Tc σ

2
t is the average variance of the treated units matched to control unit c,
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and K(c) = |Tc| represents the number of treated units to which control unit c is matched.

We can bound this term as follows:∣∣∣∣∣ 1∑
c∈C K(c)

∑
c∈C

K(c)(σ2
c − σ̄2

c )

∣∣∣∣∣ ≤ 1∑
c∈C K(c)

∑
c∈C

K(c) · max
c=1,...,nc

|σ2
c − σ̄2

c | (26)

= max
c=1,...,nc

|σ2
c − σ̄2

c |
a.s.−−→ 0 as nc, nT → ∞ (27)

where the last convergence follows from Lemma C.3, which establishes the uniform convergence

of variance differences across all control units.

Lemma C.3 (Uniform convergence of variances). Under Assumptions 3 and 4 (through the conti-

nuity condition in Definition 3.1), we have

max
c=1,...,nc

∣∣σ2
c − σ̄2

c

∣∣ p−→ 0 as nc, nT → ∞,

where σ2
c = σ2(Xc) and σ̄2

c = 1
K(c)

∑
t∈Tc σ

2(Xt), with Tc the set of treated units matched to control

c.

Proof. Recall the matching radius for treated unit t:

r(Ct) = sup
j∈Ct

∥Xt −Xj∥.

Define the maximal (sample-wide) matching radius

rmax := max
t∈T

r(Ct).

By Assumption 3, for any u ≥ 0 and each treated t, Pr
(
n
1/k
C r(Ct) > u

)
≤ C1e

−C2uk
. A union bound

over t ∈ T gives

Pr
(
n
1/k
C rmax > u

)
≤ nTC1e

−C2uk

.

Fix ε > 0 and set u = εn
1/k
C . Then Pr(rmax > ε) ≤ nTC1e

−C2εknC → 0 as nC , nT → ∞, hence

rmax
p−→ 0.

By Assumption 4, σ2(·) is Lipschitz: there exists L < ∞ such that |σ2(x)− σ2(y)| ≤ L∥x− y∥
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for all x, y. For any control c,

∣∣σ2
c − σ̄2

c

∣∣ = ∣∣∣σ2(Xc)−
1

K(c)

∑
t∈Tc

σ2(Xt)
∣∣∣

≤ 1

K(c)

∑
t∈Tc

∣∣σ2(Xc)− σ2(Xt)
∣∣

≤ L

K(c)

∑
t∈Tc

∥Xc −Xt∥.

Each t ∈ Tc is a treated unit for which c was matched, so ∥Xc −Xt∥ ≤ r(Ct) ≤ rmax. Hence

∣∣σ2
c − σ̄2

c

∣∣ ≤ L rmax and thus max
c

∣∣σ2
c − σ̄2

c

∣∣ ≤ L rmax.

Since rmax
p−→ 0, the desired conclusion follows.

C.1.3 Second component of Term A, (20c) goes to zero

For the second component of Term A (cross-product of errors):

∑
t∈T

ut

|Ct|
∑
j∈Ct

−2εj

 1

|Ct|
∑
k∈Ct
k ̸=j

εk




=
∑
t∈T

ut

|Ct|
∑
j∈Ct

−2εj
1

|Ct|
∑
k∈Ct
k ̸=j

εk


=
∑
t∈T

1∑
t∈T |Ct|

1

|Ct|
∑
j,k∈Ct
j ̸=k

(−4εjεk)

≤ 1∑
t∈T |Ct|

∑
j,k∈C
j ̸=k

−4 · K(j, k)

2
εjεk

=
1∑

c∈C K(c)

∑
j,k∈C
j ̸=k

−2 ·K(j, k)εjεk

where K(j, k) represents the number of times control units j and k appear together in the same

matched cluster. Since |Ct| ≥ 2 for all clusters (as we exclude singleton clusters), we have 1
|Ct| ≤

1
2
,
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which gives us the inequality in the last step.

To establish that this term converges to zero in probability, we apply a similar two–step proof ar-

gument as in the previous subsection (Section C.1.1). First, note that each cross–product has mean

zero since E[εjεk] = 0 by independence of errors across units. Second, observe that the pairwise

reuse count K(j, k) is automatically controlled by the individual reuse counts, because two units

can be matched together at most as many times as the less frequently used unit appears; formally,

K(j, k) ≤ min{K(j), K(k)}. This ensures that the aggregate weight on cross–products is bounded

in the same way as in the first–term analysis. Therefore, by applying the same second–moment

condition on the errors, inequalities and the law of large numbers, we conclude that the variance of

this cross–product sum vanishes, and hence the term converges to zero in probability.

C.1.4 Third component of Term A, (20d) goes to zero

For the third component of Term A (interaction between function values and errors):

(A3) =
∑
t∈T

ut

|Ct| − 1

∑
j∈Ct

[
−2

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)(
εj −

1

|Ct|
∑
k∈Ct

εk

)]
.

By the Mean Value Theorem and Assumption 5, we can bound the first factor:∣∣∣∣∣f0(Xj)−
1

|Ct|
∑
k∈Ct

f0(Xk)

∣∣∣∣∣ ≤ max
k∈Ct

|f0(Xj)− f0(Xk)|

≤ sup
j∈Ct

|f ′
0(X

′
j)| · max

j,k∈Ct
∥Xj −Xk∥

≤ sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct),

where X ′
j lies on the line segment between Xj and Xk.
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Therefore:

|(A3)| ≤
∑
t∈T

ut

|Ct| − 1

∑
j∈Ct

2 · sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct) ·

∣∣∣∣∣εj − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣
≤ 2 · sup

t∈T

[
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

]
·
∑
t∈T

ut

|Ct| − 1

∑
j∈Ct

∣∣∣∣∣εj − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣
= 2 · sup

t∈T

[
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

]
· 1∑

t∈T |Ct|
∑
c∈C

K(c)

∣∣∣∣∣εc − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣
= 2 · sup

t∈T

[
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

]
· 1∑

c∈C K(c)

∑
c∈C

K(c)

∣∣∣∣∣εc − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣ .
The term

sup
t∈T

[
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

]
goes to zero by the following lemma.

Lemma C.4 (Slope–radius product vanishes). Under Assumption 1, Assumption 5, and the expo-

nential tail condition on matching radii (Assumption 3),

Mn := sup
t∈T

[
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

]
p−→ 0.

We can then show that the weighted error differences satisfy

1∑
t∈T |Ct|

∑
c∈C

K(c)

∣∣∣∣∣εc − 1

|Ct|
∑
k∈Ct

εk

∣∣∣∣∣ p−→ 0 as nT → ∞,

using arguments similar to those in Section C.1.1. Therefore, (A3)
p−→ 0 as nT → ∞.

C.1.5 Fourth component of Term A, (20e) goes to zero

For the fourth and final component of Term A (systematic differences within clusters):

(A4) =
∑
t∈T

ut

|Ct| − 1

∑
j∈Ct

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)2

.
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As in the analysis of (A3), we apply the Mean Value Theorem to bound each squared difference:

(
f0(Xj)−

1

|Ct|
∑
k∈Ct

f0(Xk)

)2

≤
(
max
k∈Ct

|f0(Xj)− f0(Xk)|
)2

≤
(
sup
j∈Ct

|f ′
0(X

′
j)| · max

j,k∈Ct
∥Xj −Xk∥

)2

≤
(
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

)2

,

where X ′
j lies on the line segment between Xj and Xk.

Thus:

|(A4)| ≤
∑
t∈T

ut

|Ct| − 1

∑
j∈Ct

(
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

)2

=
∑
t∈T

ut · |Ct|
|Ct| − 1

(
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

)2

≤ 2 ·
∑
t∈T

ut

(
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

)2

≤ 2 ·
(
sup
t∈T

[
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

])2

.

By Lemma C.4, we have

sup
t∈T

[
sup
j∈Ct

|f ′
0(X

′
j)| · r(Ct)

]
= op(1).

Therefore, (A4)
p−→ 0 as nT → ∞.

C.2 Term B

For Term B,

Term B =
∑
t∈T

(
|Ct|∑

t′∈T |Ct′ |
− 1

nT

)
σ2
t =

∑
t∈T |Ct|σ2

t∑
t∈T |Ct|

− 1

nT

∑
t∈T

σ2
t .
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Let v be the uniform distribution on T , so for any sequence at, Ev[at] =
1
nT

∑
t∈T at. Then

Covv
(
|Ct|, σ2

t

)
= Ev

[
|Ct|σ2

t

]
− Ev[|Ct|] Ev

[
σ2
t

]
=

1

nT

∑
t

|Ct|σ2
t −

(
1

nT

∑
t

|Ct|

)(
1

nT

∑
t

σ2
t

)
.

Dividing both sides by 1
nT

∑
t |Ct| gives

Covv(|Ct|, σ2
t )

1
nT

∑
t |Ct|

=

∑
t |Ct|σ2

t∑
t |Ct|

− 1

nT

∑
t

σ2
t = Term B.

Hence,

Term B =
1∑

t∈T |Ct|/nT

Covv
(
|Ct|, σ2

t

)
.

D Proof of Lemma 4.3

Proof. Recall

V ∗
E,lim =

(
1
nT

∑
t∈T

σ2
t

)(
1
nT

+ 1
ESS(C)

)
=

1

n2
T

∑
t∈T

σ2
t +

1

n2
T

∑
j∈C

w2
j ·
(

1
nT

∑
t∈T

σ2
t

)
,

and

VE =
1

n2
T

∑
t∈T

σ2
t +

1

n2
T

∑
j∈C

w2
jσ

2
j .

Hence

V ∗
E,lim − VE =

1

n2
T

∑
j∈C

w2
j

[
1
nT

∑
t∈T

σ2
t − σ2

j

]
.

Introduce the matched averages σ2
t =

∑
j∈Ct wjtσ

2
j . Decompose:

V ∗
E,lim − VE = 1

nT

1
ESS(C)

∑
t∈T

(σ2
t − σ2

t )︸ ︷︷ ︸
(I)

+
(

1
nT

1
ESS(C)

∑
t∈T

σ2
t − 1

n2
T

∑
j∈C

w2
jσ

2
j

)
︸ ︷︷ ︸

(II)

.

Term (I). By Regular Variance and Shrinking Clusters, 1
nT

∑
t(σ

2
t − σ2

t ) → 0. By Lemma D.1,
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nT/ESS(C) = Op(1). Therefore

nT · (I) = nT

ESS(C)
· 1

nT

∑
t

(σ2
t − σ2

t )
p−→ 0.

Term (II). Compute

1

nT

1

ESS(C)
∑
t∈T

σ2
t =

1

n2
T

·
∑

j′ w
2
j′

nT

∑
j∈C

wjσ
2
j ,

so

(II) =
1

n2
T

∑
j∈C

(∑
j′ w

2
j′

nT

wj − w2
j

)
σ2
j = − 1

nT

Covp(wj, σ
2
j ),

using Lemma D.2.

Putting the pieces together,

nT

(
V ∗
E,lim − VE + 1

nT
Covp(wj, σ

2
j )
)
= nT · (I) p−→ 0,

which yields the stated result.

D.1 Bounded Ratio Lemma

Assumption 7 (Bounded maximum reuse). The maximum reuse count is bounded in probability:

Kn := max
j∈C

K(j) = Op(1),

where K(j) := #{t ∈ T : wjt > 0}.

Lemma D.1 (Bounded ratio nT/ESS(C)). Under Assumption 7,

nT

ESS(C)
=

∑
j∈C w

2
j

nT

= Op(1).

Proof. By definition,

ESS(C) =

(∑
j∈C wj

)2∑
j∈C w

2
j

=
n2
T∑

j∈C w
2
j

,

53



so
nT

ESS(C)
=

∑
j∈C w

2
j

nT

.

Thus it suffices to show that
∑

j∈C w
2
j = Op(nT ).

For a given control j ∈ C, write

wj =
∑
t∈T

wjt, K(j) := #{t ∈ T : wjt > 0}.

By Cauchy–Schwarz,

w2
j =

(∑
t∈T

wjt

)2
≤ K(j)

∑
t∈T

w2
jt.

Summing over all controls j ∈ C,

∑
j∈C

w2
j ≤

∑
j∈C

K(j)
∑
t∈T

w2
jt.

Now swap the order of summation:

∑
j∈C

K(j)
∑
t∈T

w2
jt =

∑
t∈T

∑
j∈C

K(j)w2
jt.

Define Kn := maxj∈C K(j). Then

∑
t∈T

∑
j∈C

K(j)w2
jt ≤ Kn

∑
t∈T

∑
j∈Ct

w2
jt.

For each treated unit t ∈ T , the weights satisfy
∑

j∈Ct wjt = 1. Hence

∑
j∈Ct

w2
jt ≤

(∑
j∈Ct

wjt

)2
= 1.

Therefore, ∑
j∈C

w2
j ≤ Kn

∑
t∈T

1 = Kn nT .
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By Assumption 7, Kn = Op(1), so
∑

j∈C w
2
j = Op(nT ). It follows that

nT

ESS(C)
=

∑
j∈C w

2
j

nT

= Op(1).

D.2 Covariance form of the heteroskedastic correction

Lemma D.2 (Covariance form of the heteroskedastic correction). With pj := wj/nT and ESS(C) =

n2
T/
∑

j w
2
j , the term

T =
1

n2
T

∑
j∈C

(∑
j′ w

2
j′

nT

− wj

)
wjs

2
j = − 1

nT

Covp
(
wj, s

2
j

)
.

Proof. Recall two facts:

•
∑

j∈C wj = nT (each treated contributes total weight 1 across its matched controls),

• The effective sample size ESS(C) = (
∑

j wj)
2∑

j w
2
j

=
n2
T∑

j w
2
j
. Equivalently,

∑
j w

2
j/n

2
T = 1/ESS(C).

Now set

pj =
wj

nT

(
so
∑
j

pj = 1

)
, qj =

w2
j∑

ℓ w
2
ℓ

(
so
∑
j

qj = 1

)
.

Then a few lines of algebra give

T =
1

ESS

(∑
j

pjs
2
j −

∑
j

qjs
2
j

)
=

1

ESS

(
Ep

[
s2
]
− Eq

[
s2
])

Next relate Eq to Ep. Because qj ∝ wjpj,

Eq

[
s2
]
=

ESS

nT

Ep

[
ws2

]
=

ESS

nT

(
Covp

(
w, s2

)
+ Ep[w]Ep

[
s2
])

and since Ep[w] =
∑

j pjwj =
∑

j w
2
j/nT = nT/ESS,
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Eq

[
s2
]
= Ep

[
s2
]
+

ESS

nT

Covp
(
w, s2

)
Plugging back,

T = − 1

nT

Covp
(
wj, s

2
j

)
with pj =

wj

nT

E Proof of Theorem 4.4

Proof. From Equation (9), write

nT

(
V̂ alt
E − VE

)
= nT

(
1
nT

+ 1
ESS(C)

)(
S2 − 1∑

t∈T |Ct|/nT
Covv(|Ct|, σ2

t )− 1
nT

∑
t∈T

σ2
t

)
+ nT

(
1
nT

+ 1
ESS(C)

)(
1
nT

∑
t∈T

σ2
t +

1
nT

Covp(wj, σ
2
j )
)
− nTVE

+
(
Covp(wj, s

2
j)− Covp(wj, σ

2
j )
)
. (28)

Consider each line in (28):

1. First line. By Lemma 4.2, the inner parentheses converge to zero in probability. Moreover,

nT

(
1
nT

+ 1
ESS(C)

)
= Op(1) by Lemma D.1. Hence the entire first line is op(1).

2. Second line. By Lemma 4.3,

nT

(
1
nT

∑
t∈T

σ2
t +

1
nT

Covp(wj, σ
2
j )
)
− nTVE

p−→ 0.

3. Third line. For the difference of covariances, expand

Covp(wj, s
2
j)− Covp(wj, σ

2
j ) =

1

nT

∑
j∈C

(wj − w̄)wj (s
2
j − σ2

j ),

where w̄ = 1
nT

∑
j∈C w

2
j . Each s2j is a consistent estimator of σ2

j within clusters (see the proof of

Term A in Lemma 4.2), and the weights {wj} have bounded moments by Lemma C.2. Therefore
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this term also vanishes in probability.

Combining all three parts shows that the right-hand side of (28) converges to zero in probability,

proving the claim.

F Proof of Theorem 4.5

Proof. We prove this by showing that each component of V̂ converges in probability to the corre-

sponding component of V = nT · (VE + VP ).

Step 1: Decomposition of the main term

First, we decompose the primary component of our estimator:

1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
=

1

nT

∑
t∈T

(
Yt − Ŷt(0)

)2
− τ̂ 2

Step 2: Expansion using the structural model

Next, we expand 1
nT

∑
t∈T

(
Yt − Ŷt(0)

)2
using our structural assumptions. Recall that:

• Yt = f1(Xt) + ϵ1,t

• Ŷt(0) =
∑

j∈Ct wjtYj =
∑

j∈Ct wjt(f0(Xj) + ϵ0,j)

Therefore:

Yt − Ŷt(0) = f1(Xt)−
∑
j∈Ct

wjtf0(Xj) + ϵ1,t −
∑
j∈Ct

wjtϵ0,j
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Expanding the squared term:

1

nT

∑
t∈T

(
Yt − Ŷt(0)

)2
=

1

nT

∑
t∈T

[
f1(Xt)−

∑
j∈Ct

wjtf0(Xj)

]2
(Term I)

+
1

nT

∑
t∈T

[
ϵ1,t −

∑
j∈Ct

wjtϵ0,j

]2
(Term II)

+
2

nT

∑
t∈T

[
f1(Xt)−

∑
j∈Ct

wjtf0(Xj)

][
ϵ1,t −

∑
j∈Ct

wjtϵ0,j

]
(Term III)

Step 2a: Analysis of Term I

By Assumptions 3 and ??, we have that
∑

j∈Ct wjtf0(Xj) → f0(Xt) uniformly in t. Therefore:

Term I =
1

nT

∑
t∈T

[f1(Xt)− f0(Xt)]
2 + op(1) =

1

nT

∑
t∈T

τ(Xt)
2 + op(1)

Step 2b: Analysis of Term II

Expanding Term II:

Term II =
1

nT

∑
t∈T

ϵ21,t +
(∑

j∈Ct

wjtϵ0,j

)2

− 2ϵ1,t
∑
j∈Ct

wjtϵ0,j


=

1

nT

∑
t∈T

ϵ21,t +
1

nT

∑
t∈T

∑
j∈Ct

∑
j′∈Ct

wjtwj′tϵ0,jϵ0,j′ −
2

nT

∑
t∈T

ϵ1,t
∑
j∈Ct

wjtϵ0,j

Under Assumption 4, we have E[ϵ21,t|Xt] = σ2
1,t and E[ϵ20,j|Xj] = σ2

0,j. By the law of large

numbers and independence of errors:

Term II
p−→ 1

nT

∑
t∈T

σ2
1,t +

1

nT

∑
t∈T

∑
j∈Ct

w2
jtσ

2
0,j

=
1

nT

∑
t∈T

σ2
1,t +

1

nT

∑
j∈C

(∑
t′∈T

w2
jt′

)
σ2
0,j
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Step 2c: Analysis of Term III

Term III involves cross-products between systematic and error components. Since errors have

conditional mean zero and are independent of covariates, by the law of large numbers:

Term III
p−→ 0

Step 3: Combining Terms I and the τ̂ 2 correction

From Step 2a, we have:

Term I− τ̂ 2 =
1

nT

∑
t∈T

τ(Xt)
2 − τ̂ 2 + op(1)

Recall τSATT = 1
nT

∑
t∈T τ(Xt) be the sample average treatment effect on the treated. Then:

1

nT

∑
t∈T

τ(Xt)
2 − τ̂ 2 =

1

nT

∑
t∈T

τ(Xt)
2 − τ 2SATT + τ 2SATT − τ̂ 2

Since τ̂
p−→ τSATT (consistency of the matching estimator), we have τ 2SATT − τ̂ 2

p−→ 0.

Therefore:

Term I− τ̂ 2
p−→ 1

nT

∑
t∈T

τ(Xt)
2 − τ 2SATT =

1

nT

∑
t∈T

(τ(Xt)− τSATT )
2

By the law of large numbers, as nT → ∞:

1

nT

∑
t∈T

(τ(Xt)− τSATT )
2 p−→ E[(τ(X)− τ)2|Z = 1] = nTVP

Step 4: Analysis of the correction term

The correction term in V̂ is:

S2 1

nT

∑
j∈C

(∑
t′∈T

wjt′

)2

−

(∑
t′∈T

w2
jt′

)
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By Lemma 4.2, S2 p−→ 1
nT

∑
t∈T σ2

t . Under Assumption 6, σ2
1,t = σ2

0,j = σ2
t .

The bracketed term converges to:

1

nT

∑
j∈C

(∑
t′∈T

wjt′

)2

−

(∑
t′∈T

w2
jt′

) p−→ 1

nT

∑
j∈C

(
w2

j −
∑
t′∈T

w2
jt′

)

where wj =
∑

t′∈T wjt′ .

Step 5: Final assembly

Combining all components:

V̂ =
1

nT

∑
t∈T

(
Yt − Ŷt(0)− τ̂

)2
+ S2 1

nT

∑
j∈C

(∑
t′∈T

wjt′

)2

−

(∑
t′∈T

w2
jt′

)
p−→ nTVP +

1

nT

∑
t∈T

σ2
1,t +

1

nT

∑
j∈C

(∑
t′∈T

w2
jt′

)
σ2
0,j

+
1

nT

∑
t∈T

σ2
t ·

1

nT

∑
j∈C

(
w2

j −
∑
t′∈T

w2
jt′

)

= nTVP + nTVE

= V

The last equality follows from the definition of VE and algebraic manipulation using the ho-

moskedasticity assumption.

Therefore, |V̂ − V | p−→ 0 as nT → ∞.

G Compare the Lipschitz Condition to that in the Existing

Litarature

In the existing literature, the function f(x) is often assumed to be locally Lipschitz on any compact

set X ⊂ R. This implies that for any compact set X = [a, b], there exists a constant LX < ∞ such

that:

|f(x)− f(y)| ≤ LX |x− y|, ∀x, y ∈ X .
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For example, consider f(x) = x2, where the derivative f ′(x) = 2x. On X = [0, 100], the Lipschitz

constant is:

LX = 2 ·max
x∈X

|x| = 200.

This large constant makes the bound impractical in matching-based inference, where overly conser-

vative bounds can restrict the formation of matched sets.

In contrast, our Derivative Control condition improves on the Lipschitz assumption by explicitly

tying the slope of f(x) to the size of the matched set. Specifically, it requires:

sup
x∈Ct

∣∣f ′(x)
∣∣ · radius(Ct) ≤ M,

where:

• Ct is the matched set for a given t,

• radius(Ct) is the diameter of the matched set in x-space,

• M is a universal constant independent of the matched set size.

This condition offers several practical advantages:

1. Localized Control: Instead of requiring a single large Lipschitz constant LX over a wide range,

our condition focuses on smaller, localized matched sets.

2. Adaptive Bounds: When the derivative f ′(x) is large, our condition naturally enforces smaller

matched set radii to maintain practical bounds. For instance:

If f ′(x) = 100 (as for x = 50), then radius(Ct) ≤
M

100
.

3. Real-World Applicability: In real-world matching problems, matched sets are typically small,

and our condition aligns with this reality by providing sharper, more practical bounds than

the overly conservative Lipschitz constant.

To summarize, while the Lipschitz assumption is valid on compact sets, the associated constants

LX can become impractically large for functions like f(x) = x2 over wide intervals. By explicitly
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accounting for both the derivative and the size of matched sets, our condition provides a more

precise and practical framework for matching-based inference.

H Comparison with Theorem 1 of White (1980)

Our theorem, stated as Theorem 4.5, differs from Theorem 1 of White (1980) in several key as-

pects. While both results address consistency in variance estimation under heteroskedasticity, the

differences lie in the frameworks, assumptions, and proof strategies.

H.1 Parametric vs. Nonparametric Framework

White’s Theorem 1 is based on a regression model Yi = Xiβ0 + εi, where εi represents independent

but non-identically distributed (i.n.i.d.) errors. The parametric form Xiβ0 is central, and β0 is

estimated via ordinary least squares (OLS). Heteroskedasticity arises through Var(εi | Xi) = g(Xi),

where g(Xi) is a known (possibly parametric) function. In contrast, our theorem relies on a non-

parametric matching estimator for treatment effects, without assuming a parametric form for f(Xi).

Matching is governed by hyperparameters like the number of neighbors or the maximum matching

radius, but these are not estimated from the data in the regression sense. Heteroskedasticity arises

through σ2(Xi), where σ2(·) is a uniformly continuous function.

H.2 White’s Setup: Estimating Var(β̂) vs. Cluster-Based Variance Es-

timation

White’s Theorem 1 focuses on the heteroskedasticity-consistent (HC) covariance matrix estimator

for β̂. It defines the matrix

V̂n =
1

n

n∑
i=1

ε̂2iX
′
iXi, where ε̂i = Yi −Xiβ̂.

White proves V̂n
a.s.−−→ V̄n, where V̄n is the asymptotic covariance matrix of the regressors. Our

theorem, on the other hand, defines cluster-level residual variance estimators s2t for each treated
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unit t ∈ T , given its matched controls Ct. The overall variance estimator is

S2 =
1

nT

∑
t∈T

s2t , where s2t =
1

|Ct| − 1

∑
j∈Ct

e2tj.

We prove |S2 − 1
nT

∑
t∈T σ2

t |
a.s.−−→ 0, showing consistency for the average cluster variance.

H.3 Homoskedasticity in Matched Clusters vs. General Heteroskedas-

ticity

White’s Theorem 1 allows general heteroskedasticity: Var(εi | Xi) = g(Xi), where g(·) can vary

arbitrarily across observations. Errors are independent but not identically distributed (i.n.i.d.).

Our theorem also allows heteroskedasticity: σ2(Xi) varies with Xi. However, within each matched

cluster {t} ∪ Ct, we assume σ2
j ≈ σ2

t for j ∈ Ct, based on a uniform continuity (or Lipschitz)

assumption on σ2(·).

H.4 Proof Strategy and Key Assumptions

White’s proof strategy relies on expanding V̂n − V̄n and showing that

V̂n − V̄n =
1

n

n∑
i=1

(
ε̂2iX

′
iXi − E[ε2iX

′
iXi]

) a.s.−−→ 0.

White uses assumptions on finite moments of εi and Xi (Assumptions 2–4 in White (1980)) and

uniform integrability conditions. Our proof, in contrast, relies on showing that for matched clusters

{t} ∪ Ct, the residual variance s2t converges to the true variance σ2
t . We leverage uniform continuity

of σ2(·) to argue that σ2
j → σ2

t as ∥Xtj − Xt∥ → 0. We then apply a version of the Law of Large

Numbers (LLN) for matched clusters.

H.5 Summary of Differences

The key differences between White’s theorem and our theorem can be summarized as follows.

First, White’s theorem is regression-based, while our theorem is matching-based. Second, White
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assumes a parametric model Yi = Xiβ0 + εi, whereas our model assumes a nonparametric f1(X),

f0(X). Third, White’s focus is on a robust covariance estimator for β̂, while ours is on residual

variance from matched clusters. Fourth, White allows fully general g(Xi), whereas our clusters

assume approximate homoskedasticity (σ2
j ≈ σ2

t ). Finally, White’s framework has no matching

hyperparameters, while ours depends on predefined criteria for matching (e.g., number of neighbors

or radius).

I Otsu and Rai Variance Estimator

I.0.1 Debiasing Method

A debiasing model estimates the conditional mean function µ(z, x) = E[Y | Z = z,X = x]. It is

used to offset the bias to achieve valid inference (see Section 3.4 for discussion of the issue). The

debiased estimator is defined as:

τ̃(w) =
1

nT

∑
t∈T

(
Yt − µ̂(0, Xt)−

∑
j∈Ct

wjt(Yj − µ̂(0, Xj))

)
(29)

Additional implementation details include:

• Model Choice: Linear model

• Training Data: Control data only

• Cross-fitting: Implemented by dividing the control data into two halves

I.0.2 Variance Estimators

Bootstrap Variance Estimator.

• Step 1: Use data with Zi = 0 to construct µ̂(0, x) = Ê[Y |Z = 0, X = x].

• Step 2: Construct debiased estimate for each treated unit t ∈ T :

τ̃t = (Yt − µ̂(0, Xt))−
∑
j∈Ct

wjt(Yj − µ̂(0, Xj))
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• Step 3: Construct the debiased estimator: τ̃ = 1
nt

∑
t∈T τ̃t

• Step 4: Construct the debiased residuals Rt = τ̃t − τ̃

• Step 5: Perform Wild bootstrap on {Rt} with special sampling weights

• Step 6: Construct confidence interval from bootstrap distribution

J Other Simulation Results

J.1 Detailed Figures on CI Length

See Figure 3. For the Otsu-Rai DGP, our method produces confidence intervals with an average

width of 0.092 compared to 0.057 for the bootstrap method. On average, the confidence interval

length under our method is about 1.64 times larger than that under the bootstrap method across all

sample sizes, covariate dimensions, and curve IDs. For the Che et al. DGP, the CI length under our

method is about 1.06 times larger than the bootstrap CI length. The bootstrap method’s narrower

intervals are artificially optimistic due to its failure to account for the true sampling variability

induced by control unit dependencies.

J.2 Additional Simulation Results of the Che et al. (2024) DGP

This section provides supplementary simulation results that further validate our theoretical frame-

work. We examine three key aspects: the accuracy of our VE component estimation, verification of

asymptotic bias patterns, and the behavior of effective sample sizes across different overlap scenarios.

Table 5: Additional Simulation Results: Variance Components and Bias Analysis

Degree True Est. Coverage Coverage w/o Mean Mean
of Overlap SEE SEE Rate Bias Corr. ESSC V/nT

Very Low 0.183 0.184 95.0% 92.3% 8.41 0.130
Low 0.160 0.163 94.6% 92.4% 11.26 0.122
Medium 0.145 0.148 94.0% 93.0% 14.03 0.117
High 0.133 0.136 94.4% 93.6% 16.96 0.112
Very High 0.125 0.129 94.4% 92.4% 19.64 0.110
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Figure 3: Confidence interval lengths, with orange opacity encoding interval width. Top: results
for the Otsu-Rai data generating process across varying covariate dimensions (K = 2, 4, 8), sample
sizes (n = 250, 500, 1000, 5000), and nonlinear outcome functions (curves 1–6). Bottom: results for
the Che et al. data generating process across varying degrees of population overlap and two error
variance structures.
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J.2.1 Variance Component Estimation

Our estimator demonstrates excellent performance in estimating the VE component, which captures

the measurement error variance from residual outcome noise. Table 5 shows the close correspondence

between the true SEE (computed as the standard deviation of τ̂ − SATT across simulations) and

our estimated SEE values across all overlap scenarios. The differences are minimal, ranging from

0.001 to 0.004, indicating that our pooled variance estimator accurately captures this component

of the total variance.

This accuracy is particularly important because the VE component reflects how matching struc-

ture affects variance through control unit reuse. Unlike the bootstrap method, which does not

decompose variance into interpretable components, our approach allows researchers to understand

how different aspects of matching contribute to overall uncertainty.

J.2.2 Asymptotic Bias Verification

The simulation results provide clear evidence of asymptotic bias as predicted by our theoretical

propositions. Comparing coverage rates with and without bias correction demonstrates the impor-

tance of the bias correction term Bn. Across all overlap scenarios, coverage without bias correction

is systematically lower than with bias correction:

• Very Low overlap: 92.3% vs 95.0% (difference of 2.7 percentage points)

• Low overlap: 92.4% vs 94.6% (difference of 2.2 percentage points)

• Medium overlap: 93.0% vs 94.0% (difference of 1.0 percentage points)

• High overlap: 93.6% vs 94.4% (difference of 0.8 percentage points)

• Very High overlap: 92.4% vs 94.4% (difference of 2.0 percentage points)

This pattern confirms that bias correction is essential for achieving proper coverage, particularly

in low-overlap scenarios where matching quality is poorer and bias is more substantial.
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J.2.3 Effective Sample Size Analysis

The effective sample size of controls (ESSC) shows an intuitive increasing pattern with the degree

of overlap, ranging from 8.41 in very low overlap scenarios to 19.64 in very high overlap scenarios.

This trend reflects that higher overlap allows for more efficient use of the control sample, as each

control unit can contribute meaningfully to multiple matches without dramatically inflating variance

through excessive reuse.

The mean V/nT values (representing the estimated total variance scaled by sample size) show a

corresponding decreasing pattern as overlap increases, from 0.130 to 0.110. This demonstrates that

better overlap not only improves bias (through closer matches) but also reduces variance (through

more efficient control utilization), confirming the bias-variance tradeoff in matching estimators

discussed in the theoretical sections.
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